
0.1 Measurement, Metric Prefixes, Scientific Notation, Sig Digs

The Metric System

The Metric Systems has been used in most counties (with the exception being Liberia, Myanmar and the United States) since 1984.

There are seven base units in the metric system:

1) Metre - unit of length
2) Kilogram - unit of mass
3) Second - unit of time
4) Ampere - unit of electric current
5) Kelvin - unit of temperature
6) Candela - unit of luminous intensity
7) Mole - unit of amount of substance

When dealing with really large or really small values, we use prefixes in the metric system. They are summarized on your formula sheet:

Prefix Symbol $\begin{gathered}\text { Exponential } \\ \text { Value }\end{gathered}$
atto a.............. 10^{-18}
\qquad
\qquad
\qquad
\qquad
\qquad
centi.............. c.............. 10^{-2}
deka da 10^{1}
\qquad
\qquad
mega M

\qquad
giga..............

\qquad
\qquad
T $.10^{12}$

Ex.) Converting from one prefix to another requires you to subtract exponents and move the decimal the resulting number of places:

$$
32 . \mathrm{km}=\begin{array}{r}
32000000 \\
\mathrm{~mm}
\end{array}
$$

milli............ m............. $10 \Theta 3$
kilo k.............. 13

32 00000

(3) $-(-3)=6$
move the decimal 6 places to the right

Scientific Notation

In real-life (AKA Physics), numbers are really big or really small. Rarely do we deal with "nice" numbers like 2 . Scientific notation is in the form:

Talc

must be between 1 and 10
$(1 \leq x<10)$

$$
2.73 \in 9
$$

Ex.) From formula sheet:
a. Radius of Earth: $6.37 \times 10^{-11} \mathrm{~m}$
b. Mass of Earth: $5.97 \times 10^{24} \mathrm{~kg}$
c. The speed of light: $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Significant Digits

We use significant digits (AKA "significant figures" if you're weird) because any measurement we take in physics has some amount of uncertainty (error). We want to make sure that the answer we end up getting isn't "more precise" than the numbers we measured to start with.

Significant Figures Video

Ex.) How many Sig Digs are in each of the following:
a. $4.003 S D$
b. 5.0278403

c. 0.04582

4SD
d. $\underline{5.37} \times 10^{6}$

3SD

Ex.) $7.6 \times 1.24=\underline{9.424}$
2 SD 3 SD our answer must have $2 \mathrm{SD}=9.4$

