

Questions we can answer from this scenario:

1. How long the object is in the air.
2. How far the object lands from the cliff.
3. The velocity of the object when it lands.
4. How long the object is in the air:

Given d, you can solve for t.

$$
\begin{aligned}
& \overrightarrow{\mathbf{d}}=\overrightarrow{\mathbf{v}}_{\mathbf{i}} \mathbf{t}+\mathbf{1} / \mathbf{2} \overrightarrow{\mathbf{a}}^{\mathbf{t}}{ }^{\mathbf{n}} \\
& \overrightarrow{\mathbf{d}}_{\mathrm{y}}=\mathbf{1 / 2} \mathbf{g t}^{2} \\
& \vec{d}_{y}=v_{y}{ }^{0} t+\mathbf{1} / \mathbf{2} \overrightarrow{g t}^{2} \\
& \mathbf{t =} \sqrt{\frac{\mathbf{2} \overrightarrow{\mathbf{d}}_{\mathbf{y}}}{\overrightarrow{\mathbf{g}}}}
\end{aligned}
$$

2. How far the object lands from the cliff:

$$
\begin{gathered}
\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{d}} / \mathbf{t} \\
\overrightarrow{\mathbf{d}}_{\mathrm{x}}=\overrightarrow{\mathbf{v}}_{\mathrm{x}} \mathbf{t}
\end{gathered}
$$

3. The velocity of the object when it lands:

$$
\begin{aligned}
& \vec{v}_{t}^{2}=\frac{0}{\mathbf{v}^{2}}+2 \overrightarrow{\mathbf{a}} \overrightarrow{\mathrm{~d}} \\
& \mathbf{v}_{\mathrm{fy}}=\sqrt{2 \overrightarrow{\mathbf{g}} \overrightarrow{d_{y}}}
\end{aligned}
$$

Use trig to determine the angle and resultant.

We must find the resultant of the two velocities at play.

Ex.) An object thrown horizontally with a velocity of $10.0 \mathrm{~m} / \mathrm{s}$ from the top of a 90.0 m building. How far from the base of the building will the object land and what will its final velocity be?

$t \cdot \bar{v}_{x}=\frac{\vec{d}_{x}}{t} x \quad \vec{d}_{x}=\bar{v}_{x} \cdot \underline{t}=$ $\Delta \vec{d}_{y}=\nabla_{1 y} t+1 / 2 \vec{a}_{y} t^{2}$ $\stackrel{\rightharpoonup}{d y}=1 / 2 \vec{a}_{y} t^{2}$
$-90.0=(1 / 2)(-9.81) t^{2}$
$\overline{d_{x}}=\overline{v_{x}} t$
$\overrightarrow{d_{x}}=(10.0)(4.28)$
$\frac{-90.0}{-4.905}=\frac{-4.905 t^{2}}{-4.905}$
$\overrightarrow{d x}=42.8 \mathrm{~m} \quad \sqrt{18.34 \ldots}=t \quad t=4.28 \mathrm{~s}$

$$
\left[283^{\circ}\right]
$$

Ex.) A watermelon is thrown from the top of a cliff with a horizontal velocity of $18.0 \mathrm{~m} / \mathrm{s}$. If the melon hits the ground 100 m from the cliff, how high is the cliff?

$$
\begin{aligned}
\vec{v}_{x} & =\vec{a}_{x} \\
18.0 & =\frac{100}{t} \quad t=5.55 \mathrm{~s} \\
\overrightarrow{\Delta d}_{y} & =\overrightarrow{v_{i y} t}+1 / 2 \overrightarrow{a_{y}} t^{2} \\
& =\varnothing t+(1 / 2)(-9.81)(5.5)^{2} \\
& =-151 \\
& =151 \mathrm{~m}[\text { down] }
\end{aligned}
$$

Ex.) A ball is thrown horizontally with a velocity of $15.0 \mathrm{~m} / \mathrm{s}$ from the top of a cliff. If it takes 5.50 s for the ball to hit the ground;
a) how high is the cliff?

$$
\begin{aligned}
\Delta d_{y} & =\nabla_{i_{y}} t+1 / 2 a_{y} t^{2} \\
& =8 t+(1 / 2)(-9.81)(5.50)^{2} \\
& =148 m[\text { down] }
\end{aligned}
$$

$$
t=5.50 \mathrm{~s}
$$

b) what is the ball's final velocity?

$$
\begin{aligned}
& V_{f_{y}}=\sqrt{2 \vec{a}_{11} \widetilde{V}_{y}} \\
& =\sqrt{2(-9.8))(418)} \\
& \nabla_{f y}=53.955 \\
& \vec{V}_{P}=\sqrt{15.0^{2}+53.95^{2}} \\
& \overrightarrow{V_{P}}=56.0 \mathrm{~m} / \mathrm{s} \\
& {[74]}
\end{aligned}
$$

Pg. 107 \# 1-3.
Pg. 112 \# 5.

