
1.12 Projectile Motion (II)

Projectiles Launched at an Angle:

1. How long is the projectile in the air?

If you are given $\overrightarrow{\mathbf{v}}_{\mathrm{i}}$, you can find \mathbf{t}.

Recall:

- This is called the full time expression because it gives the amount of time it takes the projectile to travel up and down.

Ex.) An object is thrown at an angle of $20^{\circ} \mathrm{N}$ of E with a velocity of $15 \mathrm{~m} / \mathrm{s}$. How long is the object in the air?

$$
\begin{aligned}
& \vec{a}=\frac{\vec{v}_{f, i}-\vec{v}_{i y}}{t} \\
& \vec{a}=\frac{-\vec{v}_{i y}-\overrightarrow{v_{i y}}}{t} \\
& \vec{a}=\frac{-2 \vec{v}_{i y}}{t} \\
& t=\frac{-2 \overrightarrow{v_{i y}}}{\vec{a}_{y}} \\
& t=\frac{-2(5.13 . .)}{-9.81}=1.05
\end{aligned}
$$

2. How long was the object in the air given d_{y} ?

Recall: at $\overrightarrow{\mathbf{d}}_{\mathbf{y}}$, the $\overrightarrow{\mathbf{v}}_{\mathbf{y}}=0$. This occurs at half the total time of the motion.

If we consider the point when half the time has elapsed...

This will give half the time the projectile is in the air.

Ex.) Rick shoots a basketball from half-court. The ball reaches a height of 20 m from its release point. How long was the ball in the air?

3. How high does it go?

Because we are talking about the y-direction, and there is an acceleration in this direction, we must use the kinematics equations with acceleration:

$$
\text { Use either: } \quad\left\{\begin{array}{l}
\vec{d}_{y}=\vec{v}_{i y} t+1 / 2 \vec{g} \vec{t}^{2} \\
\vec{d}_{y}=\vec{v}_{v y} t-1 / 2 \overrightarrow{g t}^{2} \\
\vec{v}_{t_{t y}}{ }^{2}=\vec{v}_{i y}{ }^{2}+2 \vec{g} \vec{d}
\end{array}\right.
$$

4. How far does it go (range)?

Because the x-direction undergoes uniform motion, we just use:

$$
\overrightarrow{\mathbf{d}}_{\mathrm{x}}=\overrightarrow{\mathbf{v}}_{\mathrm{x}} \mathbf{t}
$$

Ex.) A potato gun is fired with a velocity of $5.00 \mathrm{~m} / \mathrm{s}\left[60^{\circ}\right]$.
a) How long is the potato in the air?

$$
\begin{aligned}
& \sin 60^{\circ}=\overline{V_{i y}} \\
& \bar{S} .00 \\
& V_{i y}=4.3301 \ldots \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{a}=\frac{\overrightarrow{v_{f y}}-\overrightarrow{i_{i y}}}{t} \\
& a=\frac{-\overrightarrow{v_{i y}}-\overrightarrow{v_{i y}}}{t} \\
& t=\frac{-2 \overrightarrow{v_{i y}}}{\vec{a}}=\frac{-2(4.330 .)}{-9.81} \\
& t=0.8835
\end{aligned}
$$

b) How high does the potato go?

$$
\begin{aligned}
& \vec{d}_{y}=? \\
& \Delta \bar{d}_{y}=\overline{1}_{4} t^{0}-1 / 2 \vec{a}_{y} t^{2} \\
& \Delta d_{y}=-(1 / 2)(-9.81)\left(\frac{0.883)^{2}}{2}=0.956 \mathrm{~m}\right.
\end{aligned}
$$

c) What is the potato's $\frac{\text { range }}{\overrightarrow{d_{x}}} \quad \overbrace{x}=\vec{V}_{x} t$

$$
\begin{aligned}
& \cos 60^{\circ}=\frac{V_{x}}{5.00} \\
& \nabla_{x}=2.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Ex.) A baseball player hits a home run into left field. If the player hits the ball at a 45° angle, and the fence is 98 m away from home plate, with what velocity was the ball hit?

$$
\overrightarrow{V_{x}}=\overrightarrow{V_{i y}}\left(\begin{array}{c}
\vec{a}=-9.0 \\
\text { becacial of } \\
\text { Special }
\end{array}\right)
$$

$$
\sin 45^{\circ}=\frac{31.1}{\overline{v_{i}}}
$$

$$
\bar{V}_{i}=44 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
-961.38 & =-v_{i y}{ }^{2} \\
\sqrt{961.38} & =\frac{v_{i y}}{}
\end{aligned}
$$

$$
\overrightarrow{V_{i y}}=31.1 \mathrm{~m} / \mathrm{s}
$$

Pg. 112 \# 6-9.

