
1.1 Translations

Types of Functions:

Linear Functions	Quadratic Functions	Cubic Functions
$f(x)=a x+b$	$f(x)=a x^{2}+b x+c$	$f(x)=a x^{3}+b x^{2}+c x+d$

Types of Functions Continued:

Review: Sketch the following graphs by hand and state the domain and range of the functions in both set notation and interval notation.

$$
\text { Ex) } y=\frac{-2 x+4}{T} \quad y=m x+b
$$

Domain: $\{x \in \mathbb{R}\} \quad(-\infty, \infty)$ Range: $\{y \in \mathbb{R}\}(-\infty, \infty)$

Er.) $\boldsymbol{y}=-x^{2}-3 x-4$
$\begin{aligned} & \text { Domain : }\{x \in \mathbb{R}\} \text { "set notation" } \\ &(-\infty, \infty) \text { "interval notation" }\end{aligned}$

$$
R_{\text {angel }}:\{y \mid y \leq-1.75, y \in \mathbb{R}\}
$$

$$
(-\infty,-1.75]
$$

Vertical Translations

Given the "mother function" $y=f(x)=x^{2}$. Deduce a meaning for the value of \underline{k}. Graph:

- $y=f(x)+4=x^{2}+4$ sup
- $y=f(x)-6=x^{2}-66$ down

Thus, $\quad y=f(x)+k$ results in a vertical translation of k units.

Mapping Notation: $(\underline{x}, y) \longrightarrow(\underline{x}, y \pm k)$
X remains the same

Ex.) Describe the following transformations:
a) $y=f(x)+12$ VT up 12
b) $y+4 / 4=f(x)-3 \quad$ VT 7 down
$y=f(x)-7$
c) $(x, y) \longrightarrow(x, y+3)$ VT sup

Horizontal Translations
Given the "mother function" $y=f(x)=|x|$. Deduce a meaning for the value of h.

Thus, $y=f(x-h)$ results in a horizontal translation of h units.
opposite direction than sign
Mapping Notation: $(x, y) \longrightarrow(x \pm h, y)$
"What you
see is what do not switchdirection/sign you get.

Ex.) Describe the following transformations:
a) $)=\left(\begin{array}{l}(x+1) \\ (x-1) \\ \text { HT }\end{array}\right.$ | left
by $=(1 x-2)$ HTright 2
o) ($x, n)$ - $(x+3, y)$ HT 3 right
a) (x,y) 一(x-5,y) HT 5 left

Horizontal and Vertical Translations
Ex.) Given the functions $y=f(x)$, describe the following transformations:
a) $g(x)=f(x+2)-7$ HT 2 left
\sqrt{T} down 7
b) $(x, y) \longrightarrow(x+3, y-1)$ HT Knight

Ex.) Given point $\mathrm{A}(1,7)$ is on $y=f(x)$, determine the new coordinates $y=f(x+3)-5$.

$$
\begin{aligned}
& (1,7) \\
& (1-3,7-5) \\
& (-2,2)
\end{aligned}
$$

Ex.) Given $y=|x|$ translate the graph 5 units right and 3 units up. Determine the new equation, domain and range.

$$
y=|x-5|+3
$$

Domain: $(-\infty, \infty)$

$$
\begin{aligned}
& \text { Domain: }[3, \infty)] \\
& R_{\text {and: }}
\end{aligned}
$$

Ex.) If function f is transformed to a new function $g(x)=f(x)+2$, then the range of function g will be
fur

Use the following information to answer the next question.

The partial graph of the function $y=f(x)$ is shown below. The range of function f is $f(x) \geq-11$.
A $g(x) \geq-11$
B $g(x) \geq-9$
C $g(x) \geq-8$
D $\underline{g(x)} \geq 0$

Ex.) As a result of the transformation of the graph of $y=x^{3}$ into the graph of $y-4=(x-3)^{3}$, the point $(3,27)$ becomes point $(6, y)$.

The value of y is
 .
-
Round your answer to the nearest whole number.
$y=(x-3)^{3}+4$
HTright 3
VT Sup

Pg. 12 \# 2, 4, 5, 10, 11, 18

