1.3 Acceleration.notebook

Unit 1: Kinematics

1.3 Acceleration

We know that Uniform Motion means you have a constant velocity. What if your velocity isn't constant? Then you have acceleration or Non-Uniform Motion. We can't sense a constant velocity but we are able to sense a change in velocity.

$$
\begin{aligned}
& \text { Acceleration is the rate of } \\
& \text { change in velocity over time. } \\
& \qquad \vec{a}_{\text {ave }}=\frac{\Delta \vec{v}}{\Delta t}
\end{aligned}
$$

1.3 Acceleration.notebook

Dec 15-10:58 AM

Ex.) A bug buzzes at $3.0 \mathrm{~m} / \mathrm{s}[\mathrm{W}]$, then accelerate for 4.75 s at $1.25 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~W}]$. What is the insect's final velocity?

$$
\begin{aligned}
& \overrightarrow{V_{i}}=3.0 \mathrm{~m} / \mathrm{s}[\mathrm{w}] \\
& t=4.75 \mathrm{~s} \\
& \vec{a}=1.25 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{w}] \\
& \overrightarrow{V_{f}}=?
\end{aligned}
$$

Ex.) An electron has a final velocity of $3.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$ [Forward] after accelerating for 25 s at $1.5 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}$ [Forward]. What was the electron's initial velocity?

$$
\begin{aligned}
& \overline{V_{f}}=3.0 \times 10^{6} \mathrm{~m} / \mathrm{s} \\
& t=25 \mathrm{~s} \\
& \vec{a}=1.5 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2} \\
& \bar{V}_{i}=?
\end{aligned}
$$

$$
\begin{aligned}
& \vec{a}=\vec{v}_{f} \cdot \overrightarrow{v_{i}} \\
& \rightarrow-\vec{a} t+\overrightarrow{V_{f}}=\overrightarrow{V_{i}} \\
& \begin{array}{l}
\vec{V}_{i}=\left(-1.5 \times 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(25 \mathrm{~s})+3.0 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}} \\
\overrightarrow{V_{i}}=2.6 \times 10^{6} \mathrm{~m} / \mathrm{s}[\text { forward }]
\end{array}
\end{aligned}
$$

1.3 Acceleration.notebook

Displacement vs. Time Graphs and Acceleration
It's not easy to find acceleration on a displacement-time graph. However, we can look at how velocities are changing to get a feel for acceleration.

A curve on a displacement-time graph indicates acceleration.

To find velocity, we need to draw a tangent line.

$$
\begin{aligned}
& \text { slope } \\
& \text { on displacement time }
\end{aligned}
$$

Dec 15-11:38 AM

A tangent touches a curve at one point. The slope of the tangent line will give velocity.

1.3 Acceleration.notebook

Velocity vs. Time Graphs and Acceleration

Acceleration is the slope on a velocity-time graph.

Ex.) A bug, starting from rest, increases his speed to $8.0 \mathrm{~m} / \mathrm{s}$ forwards in 4.0 s . He continues at this speed for 5.0 s , then slows down to $2.0 \mathrm{~m} / \mathrm{s}$ in 2.0 s . Finally, he comes to a stop in 4.0 s .
a) Draw a velocity-time graph to model the situation.

1.3 Acceleration.notebook

Ex.) Use words to describe the motion of the objects in the following graphs:
a)

b)

Object slowing
down $\left(\vec{a}=-1.0 \mathrm{~m} / \mathrm{s}^{2}\right)$
non-uniform motion
object accelerating $[W]$ non-uniform motion

Dec 15-11:58 AM

1.3 Acceleration. notebook

Finding Displacement from a Velocity-Time Graph
A concept from Calculus, finding the area under a curve, can be used in Physics to find displacement from a Velocity-Time Graph. Let's look at the unit analysis to see why:

$$
\begin{aligned}
& A=\frac{b h}{2}=\frac{5 \cdot \frac{m}{\hbar}}{2}=m \\
& =\frac{(4.0 \mathrm{~s})(15 \mathrm{~m} / \mathrm{s})}{2}=30 \mathrm{~m}[\mathrm{~F}]
\end{aligned}
$$

