1.5 Assignment: The Kinematics Equations

Name: ____

Rearrange the following equations for the indicated variable.

a.
$$\vec{v}_{Ave} = \frac{\Delta \vec{d}}{\Delta t}$$

$$\Delta t = ?$$
 $\Delta t = 2$

b.
$$\vec{a} = \frac{\vec{v}_f - \vec{v}_i}{\Delta t}$$

b.
$$\vec{a} = \frac{\vec{v}_f - \vec{v}_i}{\Delta t}$$
 $v_f = ?$ $\vec{V}_f = \vec{O}_f + \vec{V}_i$

c.
$$2ad = v_f^2 - v_i^2$$

c.
$$2ad = v_f^2 - v_i^2$$
 $v_f = ?$ $\sqrt{p} = \sqrt{\sqrt{r^2 + 2ad}}$

d.
$$\Delta \vec{d} = \vec{v}_i t + \frac{1}{2} \vec{a} t^2$$

d.
$$\Delta \vec{d} = \vec{v}_i t + \frac{1}{2} \vec{a} t^2$$
 $v_i = ?$ $\vec{\nabla}_i = \vec{\Delta} \vec{d} - \frac{1}{2} \vec{\Delta} \vec{d}^2$

e.
$$\Delta \vec{d} = \vec{v}_i t + \frac{1}{2} \vec{a} t^2$$

e.
$$\Delta \vec{d} = \vec{v}_i t + \frac{1}{2} \vec{a} t^2$$
 $a = ?$ $\vec{\Delta} = 2 \left(\vec{\Delta} \vec{d} - \vec{V}_i \vec{t} \right)$

$$\vec{a} = \frac{\vec{v}_f - \vec{v}_i}{\Delta t}$$

$$v_i = ?$$
 $\overrightarrow{V}_i = \overrightarrow{V}_f - \overrightarrow{\alpha} +$

g.
$$\vec{a} = \frac{\vec{v}_f - \vec{v}_f}{\Delta t}$$

g.
$$\vec{a} = \frac{\vec{v}_f - \vec{v}_i}{\Delta t}$$
 $\Delta t = ?$ $\Delta t = ?$

If $v_i = 0$ then $\Delta d = ?$ for $\Delta \vec{d} = \vec{v}_i t + \frac{1}{2} \vec{a} t^2$

If $v_i = 0$ then a = ? for $\Delta \vec{d} = \vec{v}_i t + \frac{1}{2} \vec{a} t^2$

If $v_i = 0$ then $\Delta t = ?$ for $\Delta \vec{d} = \vec{v}_i t + \frac{1}{2} \vec{a} t^2$

If
$$v_f = 0$$
 then $v_i = ?$ for $\vec{v}_f^2 = \vec{v}_i^2 + 2\vec{a}\vec{d}$

A car traveling at 60 m/s accelerates at $+3.0 \text{ m/s}^2$ for 9.0 s. How far does the car travel in this time? $(6.6 \times 10^2 \,\mathrm{m})$

$$V_{i} = +60 \text{ m/s}$$
 $V_{i} = +3.0 \text{ m/s}$
 $t = 9.0 \text{ s}$
 $d = 7$

$$D\overline{d} = V_1 + 1/2 \overline{a} + 2$$

$$= (+60 \text{m/s})(9.0 \text{s}) + (1/2)(+3.0 \text{m/s}^2)(9.0 \text{s})$$

A car starting from rest travels 1296 m with an acceleration of 32 m/s^2 . How long does it take for

The car to traver that distance:
$$(9.0 \text{ s}) = 1.4 + 1/2 \text{ at}^2$$
 $d = 1296 \text{ m} = (1/2)(32 \text{ m/s}^2) \text{ t}^2$
 $d = 32 \text{ m/s}^2$
 $d = 1296 \text{ m} = (1/2)(32 \text{ m/s}^2) \text{ t}^2$
 $d = 1296 \text{ m} = (1/2)(32 \text{ m/s}^2) \text{ t}^2$
 $d = 1296 \text{ m} = (1/2)(32 \text{ m/s}^2) \text{ t}^2$
 $d = 1296 \text{ m} = (1/2)(32 \text{ m/s}^2) \text{ t}^2$
 $d = 1296 \text{ m} = (1/2)(32 \text{ m/s}^2) \text{ t}^2$

$$t^{2}=81$$
 $t=9.0s$

A car travels 1760 m over 10.0 s. If the acceleration was -20.0 m/s2, what was the initial velocity? Dd=Vit+bat2 $(+276 \, \text{m/s})$

$$d = +1760 \text{ m}$$

 $t = 10.0 \text{ s}$
 $a = -20.0 \text{ m/s}$
 $V_1 = 7$

$$\frac{1}{3} = +1760 \text{ m}$$

$$\frac{1760 = \sqrt{1(10.0) + (\frac{1}{2})(-20.0)(10.0)^2}}{1760 = 10.05}$$

$$\frac{1760 = \sqrt{1(10.0) + (\frac{1}{2})(-20.0)(10.0)^2}}{1760 = 1000}$$

$$\frac{1760 = \sqrt{1(10.0) + (\frac{1}{2})(-20.0)(10.0)^2}}{1760 = 1000}$$

$$\frac{1760 = \sqrt{1(10.0) + (\frac{1}{2})(-20.0)(10.0)^2}}{1760 = 1000}$$

5. A car traveling at 60.0 m/s suddenly has its brakes applied bringing the car to a stop after 4.00 s. How far did the car travel in this time? (+120 m)

$$V_1 = {}^{+}60.0 \text{m/s}$$

 $V_2 = {}^{+}60.0 \text{m/s}$
 $V_3 = {}^{+}000 \text{s}$
 $V_4 = {}^{+}4.00 \text{s}$
 $V_5 = {}^{+}60.0 \text{m/s}$

$$\Delta d = \left(\frac{V_f + V_i}{2}\right) + \left(\frac{O + 60.0 \text{m/s}}{2}\right) (4.00 \text{s})$$

A car traveling at 100 m/s comes to a stop in 200 m. How long did it take for the car to come to a stop? (4.00 s)

$$V_i = +100 mls$$

 $V_i = 0 mls$
 $d = +200 m$
 $t = 7$

$$\Delta \vec{t} = (V_{1} + V_{1}) + 200 = (100 + 0) + 100 = 1$$

7. A bullet leaves a rifle barrel with a speed of 350 m/s. If the length of the barrel is 0.75 m, determine the acceleration of the bullet while it was in the barrel. $(8.2 \times 10^4 \text{ m/s}^2)$

$$V_i = 0 m l s$$
 $V_f = 1350 m l s$
 $V_f = 10.75 m$
 $A = 7$

$$\vec{a} = \vec{V_4}^2 - \vec{V_1}^2$$

$$\vec{a} = 350^2 - 0^2$$

$$(2.0.75)$$

$$\vec{a} = +8.2 \times 10^4 \text{ m/s}^2$$

8. An object traveling at 10.0 m/s accelerates at 5.00 m/s^2 for 12.0 s. How far does the object travel in the <u>last three seconds</u>? (188 m)

$$\overrightarrow{d}_{12} = 10.0 \text{ m/s}$$

$$\overrightarrow{d}_{12} = 10.0 \text{ m/s}^{2}$$

$$\overrightarrow{d}_{13} = 10.0 \text{ m/s}^{2}$$

$$\overrightarrow{d}_{13} = 10.0 \text{ m/s}^{2}$$

$$\overrightarrow{d}_{14} = 10.0 \text{ m/s}^{2}$$

$$\overrightarrow{d}_{15} = 10.0 \text{ m/s}^{2}$$

$$\overrightarrow{$$

d12 = 450m

