

### 1.6 Applications of the Kinematics Equations

Steps for Solving Kinematics Problems:

1. Complete a variables list/draw a diagram if necessary.
2. Select the appropriate equation (ie. the one with one unknown variable that isn't on your list.)
3. Convert units if necessary.
4. Rearrange/"plug and chug." Sub in numbers and solve for unknown.
5. Box your final answer (correct with sig digs).


Ex.) A runner starts from rest and sprints to a speed of $6.00 \mathrm{~m} / \mathrm{s}$ in 1.50 s .
Assuming uniform acceleration, determine the distance ran.

$$
\begin{aligned}
& V_{i}=0 \mathrm{~m} 1 \mathrm{~s} \\
& V_{f}=6.00 \mathrm{~m} / \mathrm{s} \\
& t=1.50 \mathrm{~s} \\
& d=?
\end{aligned}
$$

$$
\begin{aligned}
& \Delta d=\left(\frac{V_{i}+V_{f}}{2}\right) t \\
& \Delta d=\left(\frac{0 \mathrm{~m} / \mathrm{s}+6.00 \mathrm{mls}}{2}\right)(1.50 \mathrm{~s}) \\
& \Delta d=4.50 \mathrm{~m}
\end{aligned}
$$



Ex.) The length of a primitive dartgun is 1.2 m . Upon leaving the barrel, a dart has a speed of $14 \mathrm{~m} / \mathrm{s}$. Assuming the dart is uniformly accelerated, how long does it take the dart to travel the length of the barrel?

$$
\begin{array}{ll}
V_{i}=0 \mathrm{~m} / \mathrm{s} & \Delta d=\left(\frac{v_{i}+v_{f}}{2}\right) t \\
d=1.2 \mathrm{~m} & 1.2 \mathrm{~m}=\left(\frac{0 \mathrm{~m} / \mathrm{s}+14 \mathrm{~m} / \mathrm{s}}{2}\right) t \\
V_{f}=14 \mathrm{~m} / \mathrm{s} & \frac{7.2 \mathrm{~m}}{2}=\frac{7 \mathrm{~s} / \mathrm{s} \cdot t}{7 \mathrm{~m} / \mathrm{s}} \\
t=? & t \mathrm{~m} / \mathrm{s} \\
& t=0.17 \mathrm{~s}
\end{array}
$$



Ex.) A driver of a car going $90.0 \mathrm{~km} / \mathrm{h}$ sees the lights of a barrier 40.0 m ahead. It takes the driver 0.75 s before he applies the brakes at an average breaking acceleration of $-10.0 \mathrm{~m} / \mathrm{s}^{2}$.
a) Will the car hit the barrier? $V_{i}=25 \mathrm{~m} / \mathrm{s}$
before brakes

$$
v=\frac{d}{t}
$$

$d=v t$ $d=(25 \mathrm{ml})(0.75 \mathrm{~s})$

$$
d=18.75 \mathrm{~m}
$$



$$
\begin{aligned}
& >40 \mathrm{~m} \Rightarrow \text { hits } \\
& <40 \mathrm{~m} \Rightarrow \text { doesn't hit }
\end{aligned}
$$

after brakes

$$
\begin{aligned}
& V_{i}=25 \mathrm{~m} / \mathrm{s} \\
& V_{f}=0 \mathrm{~m} / \mathrm{s} \\
& a=-10 \mathrm{~m} / \mathrm{s}^{2} \\
& d=?
\end{aligned}
$$

$$
\begin{aligned}
& a=\frac{v_{p}^{2}-v_{i}^{2}}{2 d} \\
& d=\frac{v_{p}^{2}-v_{i}^{2}}{2 a} \\
& d=\frac{(0 \mathrm{~m} / \mathrm{s})^{2}-(25 \mathrm{~m} / \mathrm{s})^{2}}{(2)\left(-10 \mathrm{~m} / \mathrm{s}^{2}\right)} \\
& d=31.25 \mathrm{~m}
\end{aligned}
$$


b) What is the maximum speed the car can be moving at and not hit the barrier? Assume all other data does not change (use $\mathrm{d}=18.75 \mathrm{~m}$ ).

$$
\begin{aligned}
d & =18.75 \mathrm{~m} \\
V_{f} & =0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
V_{f}^{2}=V_{i}^{2}+2 a d
$$

$$
\begin{aligned}
& V_{i}=? \\
& a=-10.0 \mathrm{~m} / \mathrm{s}^{2} \quad \sqrt{V_{f}^{2}-2 a d}=\sqrt{V_{i}^{2}}
\end{aligned}
$$

$$
V_{i}=\sqrt{V_{f}^{2}-2 a d}
$$

$$
V_{i}=\sqrt{(0 \mathrm{~m} / \mathrm{s})^{2}-2\left(-10.0 \mathrm{~m} / \mathrm{s}^{2}\right)(18.75 \mathrm{~m})}
$$

$$
V_{i}=19.36 \mathrm{~m} / \mathrm{s}
$$

$$
V_{i}=70 \mathrm{~km} / \mathrm{h}
$$

Pg. $53 \pm 1-14$.


Ex.) Three people are running a race, Al, Bob, and Joe. Al runs with a constant acceleration. First he passes Bob. 60.0 m and 6.0 s later he passes Joe. His velocity as he passes Joe is $15.0 \mathrm{~m} / \mathrm{s}$.
a) What is Al's speed as he passes Bob?

$$
\begin{aligned}
& \Delta \vec{d}=\left(\frac{\vec{v}_{i}+\vec{v}_{f}}{2}\right) t
\end{aligned}
$$

$$
\begin{aligned}
& 60.0 \mathrm{~m}=\left(\vec{v}_{i}+15.0 \mathrm{~m} / \mathrm{s}\right) \cdot \frac{1}{2} \cdot 6.0 \mathrm{~s} \\
& \stackrel{\rightharpoonup}{a}=1.7 \mathrm{~m} / \mathrm{s}^{2} \\
& 60.0 \mathrm{~m}=3 \vec{v}_{i}+45 \mathrm{mls} \\
& -45 \quad-45 \\
& \frac{15}{3}=\frac{3 \overrightarrow{v_{i}}}{3} \\
& \vec{V}_{i}=5.0 \mathrm{mls}[\text { forward }]
\end{aligned}
$$


b) What is Al's acceleration?

$$
\begin{aligned}
& \overrightarrow{V_{i_{\text {Bob }}}}=5.0 \mathrm{~m} / \mathrm{s} \\
& \vec{V}_{f}=15.0 \mathrm{~m} / \mathrm{s} \\
& \vec{d}=60.0 \mathrm{~m} \\
& t=6.0 \mathrm{~s} \\
& \vec{a}=?
\end{aligned}
$$

$$
\begin{aligned}
& \vec{d}=\vec{v}_{f} t-\frac{1}{2} \vec{a} t^{2} \quad \vec{a}=\frac{\vec{v}_{p}^{2}-\vec{v}_{i}^{2}}{2 d} \\
& 60.0 m=(15.0)(6.0)-\frac{1}{2} \vec{a}(6.0)^{2} \\
& 60=90+18 \vec{a} \quad a=\frac{15^{2}-5^{2}}{(2.60)} \\
& -90-90 \quad
\end{aligned}
$$

$$
-30=-18 a
$$

$$
-18 \quad-18
$$

$$
\vec{a}=1.7 \mathrm{mls}^{2}
$$


c) How far back did Al have to start to catch Bob?

$$
\begin{aligned}
& V_{i}=0 \mathrm{~m} / \mathrm{s} \\
& V_{f}=5.0 \mathrm{~m} / \mathrm{s} \\
& \vec{a}=1.6 \mathrm{~m} / \mathrm{s}^{2} \\
& \frac{d}{d}=?
\end{aligned}
$$

$$
\begin{aligned}
& \vec{V}_{f}^{2}=\vec{V}_{i}^{2}+2 \vec{a} \vec{d} \\
& (5.0)^{2}=(0.0)^{2}+2(1 . \vec{b}) \vec{d} \\
& 25=3 . \overline{3} \vec{d} \\
& \vec{d}=7.5 \mathrm{~m}[\text { back] }
\end{aligned}
$$



Ex.) As a traffic light turns green, a police car starts with a constant acceleration of $6.00 \mathrm{~m} / \mathrm{s}^{2}$. At the instant the cop begins to accelerate, a speeding truck with constant velocity at $21.0 \mathrm{~m} / \mathrm{s}$ passes by in the next lane.
a) How far will the police car travel before it overtakes the truck? Find


b) How fast will the police car be travelling when it overtakes the truck?

$$
\begin{array}{ll}
V_{i}=0 \mathrm{~m} / \mathrm{s} \\
\vec{a}=6.00 \mathrm{~m} \mathrm{~s}^{2} & \overrightarrow{V_{f}}=\sqrt{0^{2}+2(6.00)(147)} \\
d=147 \mathrm{~m} & \overrightarrow{V_{f}}=42.0 \mathrm{~m} / \mathrm{s} \\
t=7.0 \mathrm{~s} & \overrightarrow{V_{f}}=? .51 \mathrm{~km} / \mathrm{h}
\end{array}
$$



Ex.) A moped, starting from rest, has an acceleration of $+2.60 \mathrm{~m} / \mathrm{s}^{2}$. After the moped has travelled 120 m , it slows down to a stop with an acceleration of $-1.50 \mathrm{~m} / \mathrm{s}^{2}$. What is the total displacement of the moped?

(A) $\vec{v}_{f_{A}}{ }^{2}=\vec{v}_{i A}^{2}+2 \vec{a} \vec{d}$
$\vec{V}_{A_{A}}=\sqrt{0^{2}+2\left(2.60 \mathrm{mb} 5^{5}\right)(120 \mathrm{~m})}$ $\vec{V}_{P_{A}}=24.979 \ldots \mathrm{~m} / \mathrm{s}$
(B) $\vec{V}_{i_{S}}=24.979 \ldots \mathrm{~m} / \mathrm{s}$ $V_{P_{B}}=0 \mathrm{~m} / \mathrm{s}$ $\vec{a}=-1.50 \mathrm{mls}^{2}$ $\vec{d}=$ ?

$$
\begin{gathered}
\text { s } \begin{array}{c}
\vec{a}=\frac{\bar{v}_{p}^{2}-\bar{v}_{i}^{2}}{2 \bar{a}} \\
\vec{d}=\frac{\bar{\sigma}_{p}^{2}-\vec{v}_{i}^{2}}{2 \vec{a}} \\
\vec{d}=\frac{0^{2}-(24.979 . \ldots)^{2}}{(2 \cdot-1.50)} \\
\vec{d}=208 \mathrm{~m} \\
\vec{d}_{\text {total }}=\overrightarrow{d_{A}}+\vec{d}_{B}=120 \mathrm{~m}+208 \mathrm{~m} \\
=328 \mathrm{~m}
\end{array}
\end{gathered}
$$

