
1.9 Adding Non-Right Angle Vectors

There are two methods for adding vectors which are not parallel or perpendicular to each other; Trig Laws or breaking vectors into x and y components.

Method 1: Trig Laws
In order to use Sine and Cosine Laws, you need to have covered this in Math 20-1.

Method 2: Breaking vectors into x and y components.
We will focus on this method in Physics 20 as Math 20-1 is not a pererequisite.

Ex.) Add the following vectors:

Step 1: Break each vector
into its x and y components.

$\sin 60^{\circ}=\frac{\overrightarrow{d y}}{8.0}$

$$
\overrightarrow{d_{y}}=+6.928 \ldots \mathrm{~m}
$$

Step 2: Add the vectors going in the x and y directions.

$$
\begin{aligned}
& x_{\text {total }}=15 m+4.0 m=19 m \\
& y_{\text {total }}=6.9 m
\end{aligned}
$$

Step 3: Using the new x and y components, find the new resultant.

$$
\begin{array}{ll}
R=\sqrt{\left.19.0^{2}+6.982\right)^{2}} \\
R=20 \mathrm{~m}\left[20^{\circ}\right] & \tan \theta=\frac{6.982 \ldots}{19.0} \\
& \theta=20^{\circ} \mathrm{No} \mathrm{~N} E
\end{array}
$$

Step 4: Redraw the diagram.

Now we will do Physics problems with these two-dimensional vectors:
Ex.) A swimmer whose swimming velocity in still water is $1.50 \mathrm{~m} / \mathrm{s}$ travels north across a river. The river current is flowing $2.0 \mathrm{~m} / \mathrm{s}$ East. What is the resultant velocity of the swimmer?

$$
\begin{aligned}
& R=\sqrt{1.5^{2}+2.0^{2}}=2.5 \mathrm{~m} / \mathrm{s}\left[53^{\circ} \mathrm{E} \text { on }\right] \\
& \tan \theta=\frac{2.0}{1.5} \\
& \theta=53^{\circ}
\end{aligned}
$$

Ex.) A canoe is paddling across a stream which is 25 m wide. The stream has a current of $3.2 \mathrm{~m} / \mathrm{s}$ East. If the canoe paddles directly North with a velocity of 4.0 m / s, how far downstream will it end up?

b) If the river is 6.75 m wide, how long will it take until Heather crosses the $R / 2.3 \mathrm{mb}$ $\vec{V}=\frac{\vec{d}}{t}$ theoretical, but the fun is real.

Pg. 90 \# 4-10.

