\qquad

Math 30-1: 2.1-2.3 Exponents Practice

1. Suppose the graph of $f(x)=b^{x}$, where $\mathrm{b}>1$, is translated such that the equation of the image graph is expressed as $y=f(x-1)-2$. Write the range of the transformed function in interval notation.
2. Describe how the graph of $y=2(3)^{x}$ will change if the rate of growth were changed to a factor of 5 .

Use the following information to answer the next two questions.

The numbered characteristics below refer to graphs of an exponential functions in the form: $y=b^{x}$.

1. domain	2. range
3. y-intercept	4. x-intercept
5. horizontal asymptote	6. vertical asymptote
7. increasing	8. decreasing

3. When comparing the graphs of $y=b^{x}, b>1$ and $y=b^{x}, 0<b<1$ the characteristic(s) that would be the same for both graphs are number(s) \qquad . Record your answers in ascending order in the numerical response boxes.

4. When contrasting the graphs of $y=b^{x}, b>1$ and $y=b^{x}, 0<b<1$ the characteristic(s) that would be different for the graphs are number(s) \qquad . Record your answers in ascending order in the numerical response boxes.

5. Given the function defined by $f(x)=3^{x-1}-5$, identify the following characteristics of the graph.
range \qquad x-intercept \qquad y-intercept \qquad
equation of the horizontal asymptote \qquad
6. Describe the series of the transformations involved to transform the graph $y=3^{x}$ to the graph of $y=-2(3)^{x-4}+5$.
7. Sketch the graph of the function defined by $y=2^{x+1}-5$ and identify the characteristics of the graph.

domain	
range	\square
horizontal asymptote	
y-intercept	\square
$(0,1) \rightarrow$	
x intercept	
(Round to 0.1$)$	

Use the following information to answer the next question
The partial graph of an exponential function is shown below.

8. Write the function equation that represents the graph in the form $y=b^{x}+d$
9. Use a graphing method to determine the roots of each equation, rounded to the nearest tenth if necessary.
a) $4^{-x+2}=3^{2 x}$
b) $4^{3 x+1}=\left(\frac{1}{2}\right)^{2 x-3}$

Use the following information to answer the next two questions.
Annabelle deposits \$400 into an investment that earns 5\% annual interest, compounded semi-annually.
10. Write an exponential function that could be used to determine the amount accumulated in the investment.
11. What it the total amount in the investment after 4 years if Annabelle does not withdraw any money?
12. Algebraically solve each of the following.
a) $5^{3-2 x}=5^{-x}$
b) $6^{2 b-12}=1$
c) $9^{4 x-3}=27^{2 x+8}$
d) $3^{x^{2}-42}=3^{-x}$
e) $5^{x}=125(\sqrt{5})$
f) $64^{x-2}=(\sqrt[4]{4})^{3 x+3}$
13. The amount of Phosphorous-32 can be found using the formula $A(t)=A_{o}\left(\frac{1}{2}\right)^{\frac{t}{h}}$, where $A(t)$ is the present mass, A_{o} is the initial mass, t is the time elapsed, and h is the half-life. Given that the half-life of this substance is 14.3 days, the length of time that it takes 96.2 kg to decay to 12.5 kg to the nearest day is \qquad .
14. The number of bacteria in a culture triples every 9 hours. There are initially 1500 bacteria present.
a) Write an equation that could be used to model the growth of the bacteria.
b) Use your model equation to algebraically and graphically determine how many hours it would take for 13500 bacteria to be present?

