
2.11 Gravitational Field Strength on Other Planets

\rightarrow Same letter; Big Difference

$\overrightarrow{\mathrm{g}}$: - acceleration due to gravity/gravitational field strength $\underset{\text { mantity }}{\mathrm{m} / \mathrm{s}^{2}} \quad \mathrm{~N} / \mathrm{kg}$

- vector quantity
- differs from place to place

G: - universal gravitational constant

- scalar quantity
- the same everywhere in the Universe
$-6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$

While G is fixed throughout the Universe, $\stackrel{\rightharpoonup}{\mathrm{g}}$ can change.
This is similar to the idea of mass (always fixed) and weight (variable).
We can use this idea to determine some Physics on different planets.
**Note: A helpful data table of planetary info is on Pg. 218.
Ex.) How would you determine the weight of an object on another planet?
Step 1: Find the field strength on the planet, say Venus, from Pg. 218 in text.

$$
g=\frac{G M}{r^{2}}=\frac{\left(6.67 \times 10^{-11}\right)\left(4.87 \times 10^{24}\right)}{\left(6.05 \times 10^{6}\right)^{2}}=8.87 \mathrm{~N} / \mathrm{kg}
$$

Step 2: Use Newton's Second Law to work out the objects weight.

Ex.) What is the gravitational field strength on the planet Jupiter?

$$
g=\frac{G M}{r^{2}}=\frac{\left(6.67 \times 10^{-11}\right)\left(1.90 \times 10^{27}\right)}{\left(7.15 \times 10^{7}\right)^{2}}=24.8 \mathrm{~N} / \mathrm{kg}
$$

Ex.) What is the gravitational field strength on the planet Mercury?
$g=\frac{G m}{r^{2}}=\frac{\left(6.67 \times 10^{-11}\right)\left(3.30 \times 10^{23}\right)}{\left(2.44 \times 10^{6}\right)^{2}}=3.70 \mathrm{~N} / \mathrm{kg}$

The field strength on Earth is also not fixed; it depends on two factors:

1. Altitude: How high above the surface of the Earth an object is placed.
2. Latitude: A measure of North and South of the equator.

Why would latitude effect field strength?

Because of its rotation, Earth is not actually a perfect sphere. It is a geoid, slightly bulging around the equator.

The Earth is about 21 km wider in radius at the

Of course, the Earth isn't perfectly smooth either: it has mountains and trenches.

But, compared to it's massive radius, these "imperfections" seem small.

Pg. 229 \# 3, 5, 7.

