
2.2 Calculating with Scalars and Vectors

Recall: Scalars indicate a magnitude only while vectors indicate magnitude and direction.

Examples:

Scalars
V: speed
($110 \mathrm{~km} / \mathrm{h}$)
\vec{V} : velocity
($110 \mathrm{~km} / \mathrm{h}$ [s])
d distance
(300 m)
a : acceleration \vec{a} : acceleration
($9.81 \mathrm{mls}^{2}$)
\vec{d} : displacement
(300m [Soft W])
($9.81 \mathrm{~m} / \mathrm{s}^{2}$ [toward stile $\left.\begin{array}{c}\text { centre of fe Forth) }\end{array}\right]$

a) What is her distance travelled?

$$
d=275+425=700 \mathrm{~m}
$$

b) What is her displacement?

$$
\begin{aligned}
\vec{d}=+275+-425 & =-150 \mathrm{~m} \\
& =150 \mathrm{~m}[\mathrm{w}]
\end{aligned}
$$

2.2 Calculating with Scalars and Vectors. notebook

Ex.) It takes 1.00 min for a sound wave to travel 20 $\times 10^{1} \mathrm{~km}$ [W]. What is the velocity of sound, in m / s ?

$$
\begin{aligned}
& \vec{v}=\frac{d}{t} \\
& t=1.00 \mathrm{~min}=60.0 \mathrm{~s} \\
& \bar{d}=20 \mathrm{~km}[\mathrm{w}] \\
& =20000 \mathrm{~m}[\mathrm{w}] \\
& \begin{array}{c}
\vec{v}=\frac{20000 \mathrm{~m}}{60.0 \mathrm{~s}} \\
\vec{v}=3.3 \times 10^{2} \mathrm{~m} / \mathrm{m} \\
\mathrm{wd}
\end{array}
\end{aligned}
$$

