
2.2 Exponential Word Problems

Growth/Decay Formula

$$
y=a b^{\frac{t}{p}}
$$

a = initial amount
b = rate of change
$t=$ time passed
$P=$ time to multiply(period)
$y=$ future amount

Ex.) A 90 mg sample of a radioactive isotope has a half-life of 5 years.
a) Write a function, $\underline{m(t)}$, that relates the mass of the sample, m, to the elapsed

$$
\text { time, } t \text {. }
$$

$$
m(t)=90(1 / 2)
$$

$$
\begin{aligned}
& a=90 \\
& b=1 / 2
\end{aligned}
$$

$$
t=t
$$

b) What will be the mass of the sample in 6 months?

$$
P=5 \text { years }
$$

c) How long will it take for the sample to have a mass of 0.1 mg ?

$$
0.1=90(1 / 2)^{t}
$$

$$
\begin{aligned}
& y_{1}=0.1 \\
& y_{2}=90(1 / 2)^{x / 5} \quad \text { Intersection: }(49,0.1) \\
& 49 \text { years }
\end{aligned}
$$

Ex.) A bacterial culture containing $\frac{800 \text { bacterial initially }}{a}$ will double every $\frac{90 \text { minutes. }}{b=2}$.
a) Write a function, $B(t)$, that relates the number of bacteria, $=2$, to the elapsed time, t.

$$
y=B(t)=800(2)^{t / 90}
$$

b) How many bacteria will exist after (8 hours; $86 / \times \frac{60}{1 K} \mathrm{~min}=480 \mathrm{~min}$

$$
\begin{aligned}
& B(480)=800(2)^{(480 / 00)} \\
&=32254 \text { bacteria }
\end{aligned}
$$

c) How long ago did the culture have 50 bacteria?

$$
\begin{aligned}
& 50=800(2)^{x / 90} \\
& y_{1}=50 \\
& y_{2}=800(2)^{x 40}
\end{aligned}
$$

Intersection: $\frac{(-360,50)}{\uparrow}$

$$
\begin{aligned}
& 360 \text { min } 9 \text { ago } \\
& (6 \text { homs })
\end{aligned}
$$

Ex.) A city with a population of 800,000 is projected to grow annually at a rate of 1.3%
a) Estimate the population of the city in 5 years. $\quad \begin{aligned} & P=1 / \text { yen } \\ & x\end{aligned} \quad \begin{aligned} & 1+0.013 \\ & b=1.013\end{aligned}$

$$
\begin{aligned}
& \text { a) Estimate the population of the city in } 5 \text { years. } \\
& \begin{aligned}
y=800000(1.013)^{x} & =800000(1.013)^{5=1 / y e n} \\
& =853370 \text { people }
\end{aligned} \quad \begin{array}{l}
b=1.013
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) How many years will it take for the population to double? } \\
& 1
\end{aligned}
$$

c) If projections are incorrect, and the city's population actually decreases at an annual rate of $\underbrace{0.9 \%}$, estimate how many people will leave the city in 3 years. 99.1% return

$$
\begin{aligned}
& 0.991=b \\
y & =800000(0.991)^{3} \\
= & 778594 \text { people stay) } \quad \therefore \begin{array}{r}
21406 \text { people } \\
\text { left }
\end{array}
\end{aligned}
$$

Ex.) $\$ 750$ is placed in a savings account that compounds interest annually at a rate of 2.5% a
$b=1.025$
a) Write a function, $A(t)$, that relates the amount of the investment, A, with the elapsed time, t.

$$
A(t)=750(1.025)^{t}
$$

b) How much will the investment be worth in 5 years? How much interest will have been earned?

$$
\left.A(5)=750(1.025)^{5}=+848.55\right)
$$

c) How long does it take for the investment to double?

$$
\begin{aligned}
& 1500=750(1.025)^{\prime} \\
& 2=1.025)^{x} \\
& x=28.071 \\
& x=29 \text { yean }
\end{aligned}
$$

