- 1. The population of wolves in a forest is increasing at a rate of 2.5% per year. The initial population is 240 wolves.
 - a) Write an exponential function that relates the population and the time, in years, from now.

$$y = 240(1.025)^{x}$$

b) What will be the population in 6 years?

c) In how many years will the population double?

$$480 = 240(1.025)^{x}$$

 $2 = 1.025^{x}$
 $x = 28$ years

- 2. A certain culture of bacteria, triple every 25h. The initial count of shows 1000 bacteria present.
 - a) Write an exponential function that models the given conditions.

$$y = 1000(3)^{\frac{N}{25}}$$

b) Approximately how many bacteria will there be in 4 days?

$$y = 1000(3)$$
 = 67943 bacteria

c) How many bacterial were there 3 days prior to the count?

$$y = 1000(3)^{-72/25} = \frac{-72h}{H2 bacteria}$$

d) When will there be 10000 bacteria?

$$10\,000 = 1000(3)^{25}$$

$$10 = 3^{25}$$

3. After each washing, 1% of the dye in blue jeans is washed out. How much of the original dye remains after 50 washings?

$$y=0.99^{x}=0.99^{50}=0.61=61^{\circ}$$
. remains

4. A certain culture of bacteria, triple every 20h. The initial count shows 2 bacteria present.

a) Write an exponential function that models the given conditions.

b) Approximately how many bacteria will there be in 6 days?

c) At what time will there be 1000 bacteria??

$$1000 = 2(3)^{1/20}$$

 $500 = 3^{1/20}$ $X = 113 \text{ homs}$

- 5. The intensity of the light below the surface of a particular lake is reduced by 4% for every meter below the surface.
 - a) Write an exponential function that models the intensity of the light at any depth below the surface.

b) What percent of the original intensity of light remains 10 m below the surface?

c) Use a graph to determine how far below the surface the light has to travel for the intensity to be 30% of the surface intensity.

$$0.30 = 0.96$$
 $X = 29m$

6. In your quest for greatness you discover a new element. The half-life of the newly discovered element is 5.6 hours. a) Write an exponential function that models the half-life of the element for any

initial amount.

everything will be in percents.

b) What percent of the original element is there in 3 days?

y= 100(1/2) = 0.013%

c) Use a graph to determine when there will be 15% of the element remaining.

15=100(12) \$ 15.6

- 7. The population of a town is increasing at an average rate of 1.5%/ month. If there are 2301 people in the town this month.

 a) How many people will be in the town 2 years from now?

 $y = 2301(1.015)^{24}$ = 24m = $2301(1.015)^{24}$ = 32991 peox

b) How many people were in the town two years ago?

c) How many months will it take for the population to reach 2850 people?

2850 = 2301 (1,015)×

X = 14 months

			•
	·		
		·	·