
2.3 Solving Exponential Equations with Like Bases

In order to solve exponential equations with like bases, we need to be able to recognize some common exponents.

Ex.) Convert the following to a like base of ' 2 '.
a) 4
b) 8
c) 16
d) 32
e) 1
2^{2}

$$
2^{3}
$$

2^{4}

$$
2^{5}
$$

$$
2^{\circ}
$$

Ex.) Convert the following to a like base of ' 5 '.
a) 1
b) 25
c) 125
d) $1 / 5$
e) $1 / 25$
5°
5^{2}
5^{2}
$\frac{1}{5^{1}} 9$
5^{-2}

$$
=5^{-1}
$$

Steps for solving exponential equations:

* isolate.

1. Look for like bases. If they are not immediate, see if you can create like bases.
2. Drop the bases and solve the exponents using algebra.

Ex.) Solve.
a) $3^{x}=27$
b) $10^{2 x}=100$
c) $2^{x+1}=8$
d) $4^{x}-d / 2=14$

$x=3$

$$
\begin{aligned}
& 2^{x+1}=2^{3} \\
& x+1=3 \\
& x=2
\end{aligned}
$$

| $\log _{a^{x}=y}$ |
| :--- | :--- | :--- |
| $a^{y}=x$ |

Ex.) Solve.

$$
\begin{gathered}
{ }^{\text {a) } 8^{33 x-2}=16^{x+1}} 2^{3(x x-2)}=2^{4(x+1)} \\
3(3 x-2)=4(x+1) \\
9 x-6=4 x+4 \\
5 x=10 \\
x=2
\end{gathered}
$$

$$
\begin{aligned}
& \text { b) } 27^{27+3}=(1 / 9)^{2 \times 5} \\
& 3^{3(x+3)}=3^{-2(2 x-5)} \\
& 3 x+9=-4 x+10 \\
& 7 x=1 \\
& x=1 / 7
\end{aligned}
$$

