

Logarithms are the inverse of exponential functions(switch x and y).

$y=2^{x} \quad y=\log _{2} x$

Label the components of Logarithms and Exponents:

argument

"The Seven Rule":
In order to write any logarithm in its corresponding exponential form, you can use the rule of seven to remember the form.

$$
\log _{B} A 7=E \quad B^{E}=A
$$

$$
\log _{B} A=E \quad A=B^{E}
$$

Ex.) Change the follow from exponents to logs:
a) $2 x=8 \log _{2} 8=x$
b) $\operatorname{a}^{3} 727 \quad \log _{a} 27=3$
c) $4>64 \quad \log _{4} 64=x$
d) $3 x>1 / 9$
$\log _{3}(1 / 9)=x$
e) $5 x>100$
(exact value vs. approximate value)

Ex.) Change the following logarithms to exponents:
a) $\log _{2} 8 \rightarrow \quad 2^{x}=8$
b) $\log _{2} x>10 \quad 2^{10}=x$
c) $\log _{x} y z \quad x^{z}=y$

Calculating Logarithms on the calculator:
TI-NSpire calculators allow you to put any base in your calculator.
TI-84's always do a base of 10. If you need to calculate a log that has a base other than 10 you must do a "change of base."

$$
\text { ie. } \log _{2} 3=\frac{\log (3)}{\log (2)}=1.584 \ldots
$$

Ex.) Solve.
a) $\log _{2}(1 / 8 x$
b) $\log _{2} x>5$
$\frac{\log (1 / 8)}{\log 2}=-3$
$2^{5}=x$
c) $x=910000$
$10^{x}=10000$
$2^{x}=\frac{1}{8}$
$2^{x}=2^{-3}$
$x=-3$
$x=32$
$10^{x}=10^{4}$
$x=4$
d) $\log _{x} 36{ }^{2} 2$
e) $\log _{64} x>2 / 3$

$64^{2 / 3}=x$
$x=6$
$\sqrt[3]{64}^{2}=x$
$4^{2}-x$
$16=x$

Pg. 380 \# 2-4, 12-14, 17, 18.

