
$2.4 \mathrm{~V}_{\mathrm{f}}$ Formulas

This is the formula given on the formula sheet. We commonly use the following rearranged form of this:

We use algebra to obtain the second form:

$$
\begin{gathered}
t \cdot \vec{a}=\frac{\vec{v}_{f}-\overrightarrow{v_{i}}}{K} \cdot t \\
\vec{a} t=\vec{v}_{f}-\vec{v}_{i} \\
+\overrightarrow{v_{i}}+\overrightarrow{v_{i}} \\
\vec{a} t+\vec{v}_{i}=\overrightarrow{v_{f}}
\end{gathered}
$$

2.4 Vf Formulas.notebook

Ex.) A golf ball is sitting on a tee. At a time 53 s after the ball is hit it is travelling with a speed of $65.0 \mathrm{~km} / \mathrm{h}$. What orthe acceleration of the ball during that period?

2.4 Vf Formulas.notebook

Ex.) An object starts from rest and accelerates $1.30 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~N}]$ for 600 s . What is the final velocity of the object?

3sd

2.4 Vf Formulas.notebook

What if we were asked for time?

$$
t \cdot \vec{a}=\frac{\bar{v}_{f}-\bar{v}_{i}}{t} \cdot t
$$

Rearrange for t: $\frac{\bar{\phi} t}{\bar{\phi}}=\frac{\overline{V_{f}}-\overrightarrow{V_{i}}}{\vec{a}}$

$$
t=\frac{\bar{V}_{f}-\vec{V}_{i}}{\vec{a}}
$$

Ex.) A track athlete runs at a velocity of $8.1 \mathrm{~m} / \mathrm{s}$, then slows down to $4.1 \mathrm{~m} / \mathrm{s}$. Her acceleration is at a rate of $-0.52 \mathrm{~m} / \mathrm{s}^{2}$. How long did this change in velocity take? Lsd. $\frac{t}{t}$

