

Ex.) Graph $y=\log _{2} x$ and determine it's characteristics(domain, range, x-int, y-int, and asymptotes). Find intercepts algebraically:

$$
y=\log (x) / \log (2)
$$

Domain: $x>0$
Range: $y \in \mathbb{R}$
X-int: $(1,0)$
y-int: none.
Asymptote: $x=0$

Ex.) Graph $y=\log _{2}(x+6)-3$ and determine it's characteristics(domain, range, x-int, y-int, and asymptotes). Find intercepts algebraically: HT Cleft, VT 3 down

Domain: $x>-6$
Range: $y \in \mathbb{R}$
X-inf: $(2,0)$
y-int: $(0,-0.4)$
Asymptote: $x=-6$

$$
\begin{aligned}
x+6 & >0 \\
x & >-6
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{x \text {-int }}{} & y \text {-int } \\
0=\log _{2}(x+6)-3 & y=\log _{2}(1+6)-3 \\
3=\log _{2}(x+6) & y=\log _{2} 6-3 \\
2^{3}=x+6 & y=\log ^{2} 6-3 \\
x=2 & \log ^{2}
\end{array}
$$

Ex.) Graph $y=\log _{2}(\underline{2 x+6})$ and determine it's characteristics(domain, range, x-int, y-int, and asymptotes). Find intercepts algebraically:

$$
y=\log (2 x+6) / \log (2)
$$

Domain: $x>-3$
Range: yer
X-inf: $(-5 / 2,0)$ Y-nit: $(0,2.6)$
Asymptote: $x=-3$
$2 x+6>0$ $2 x>-6$ $x>-3$

$0=\frac{x_{\text {in }}}{\log _{2}(2 x+6)}$
y-int

$$
\frac{y-\operatorname{lin}^{\prime}}{y=\log _{2}(2(0)+6)}
$$

$$
\begin{aligned}
& 2^{0}=2 x+6 \\
& 1=2 x+6
\end{aligned}
$$

$$
y=\log _{2} 6
$$

$$
\bar{T}=2 x+6
$$

$$
-5=2 x
$$

$$
y \approx 2.6
$$

$$
x=-5 / 2
$$

