
2.7 Solving Log Equations

- If everything has a log: Use log laws to simplify logs and then solve the arguments(the "inside" of the log).
- If a term/terms do not have a log: Simplify the logs to make a single log and rewrite as an exponent to solve.
Since you cannot take the log of a negative number, you MUST check for extraneous roots.

$$
\begin{aligned}
& \text { Ex.) Solve and verify. } \\
& \text { a) } \log x-\log 2=\log 5 \quad \text { Verify } \\
& \begin{aligned}
\log \left(\frac{x}{2}\right) & =\log 5 \quad \underbrace{\frac{\log 10-\log 2}{2}} \\
2=5 \cdot 2 & = \\
& =
\end{aligned} \\
& \text { b) } \log _{5} 3+\log _{5} x=\log _{5} 30 \\
& \log _{5}(3 x)=\log _{3} 30 \\
& \begin{array}{l}
3 x=30 \\
x=10
\end{array} \\
& \text { c) } \log _{5}(x+1)+\log _{5}(x-3)=1 \\
& \log _{5}[(x+1)(x-3)]=1 \\
& 5^{\prime}=(x+1)(x-3) \\
& 4 \wedge_{2}^{-8} \quad 5=x^{2}-2 x-3 \\
& V_{-2}^{2} \quad 0=x^{2}-2 x-8 \\
& 0=(x-4)(x+2)
\end{aligned}
$$

$$
\begin{array}{r}
\text { f) } \log _{2}(x-6)=3-\log _{2}(x-4) \\
\log _{2}(x-6)+\log _{2}(x-4)=3 \\
\log _{2}[(x-6)(x-4)]=3 \\
2^{3}=x^{2}-10 x+24 \\
0
\end{array} \quad \begin{array}{r}
\\
x^{2}-10 x+16
\end{array} \quad \rightarrow 0=(x-8)(x-2)
$$

$\log _{7}[x(x-1)]=\log _{7} 4 x$
$x^{2}-x=4 x$
$x^{2}-5 x=0$
$x(x-5)=0$
Pg. 412 \# 1, 5, 6, 8.

