2.8 Solving Exponential Equations with Non-Like Bases.notebook

Exponential y=2 ^x y=3 ^x y=4 ^x Asymptote
Ex.) Solve. Leave your answer as an <u>exact value</u> . a) $\log_3^3 = \log_5$ $\frac{1}{\log_5} = \frac{1}{\log_5} = \frac{1}{\log_5}$ $\log_6 C = \frac{1}{\log_6 C}$
$\begin{array}{c} X = \log_3 5 \\ 1 \\ \log 5^{3\times} = 3^{2\times 1} \\ \log 5^{3\times} = \log^3 3^{\times} \\ \end{array} & \text{ log } \underline{both} \text{ sideo } \\ \end{array}$
$3 \times \log 5 = (2 \times -1) \log 3$ $3 \times \log 5 = 2 \times \log 3 - \log 3$ $-2 \times \log 3 - 2 \times \log 3^{-1}$ $3 \times \log 5 - 2 \times \log 3 = -\log 3$
$\frac{\chi(3\log 5 - 2\log 3)}{3\log 5 - 2\log 3} = \frac{-\log 3}{3\log 5 - 2\log 3}$
$\chi = -\log 3$ $3\log 5 - 2\log 3$

2.8 Solving Exponential Equations with Non-Like Bases.notebook

=3[×] ٦ Asymptote c) $3^{x+2} = 8^{2x-3}$ $\log 3^{(K+2)} = \log 3^{(2K-3)}$ -2)log3 = (2x-3)log8 6 $X \log 3 +$ 2xlog8 ·210g3 310g3-X10g3-2x10g8= メ(-21093 Ъ -21a log 3 2109 $(| \alpha$ χ= X = 3100

2.8 Solving Exponential Equations with Non-Like Bases.notebook

