
2.8 Solving Exponential Equations with Non-Like Bases

Like Bases: Non-Like Bases:

$$
\begin{aligned}
& 4^{x=64}=4^{3} \\
& x=3
\end{aligned}
$$

Ex.) Solve. Leave your answer as an exact value.
a) $\log 3^{x}=\log 5$
$\frac{x \log 3}{} 3=\frac{\log 5}{\log 3} \quad \log _{b} c=\frac{\log _{a} c}{\log _{a} b}$. $\quad \log ^{2}$
$x=\log _{3} 5$
$\log 5^{3 x}=\log 3^{(2 x-1)} * \log$ both sides *
$3 x \log 5=(2 x-1) \log 3$
$3 \times \log 5=2 \times \log 3-\log 3$
$-2 x \log 3-2 x \log ^{3}$
$3 \times \log 5-2 \times \log 3=-\log 3$
$\frac{x(3 \log 5-2 \log 3)}{3 \log 5-2 \log 3}=\frac{-\log 3}{3 \log 5-2 \log 3}$
$x=\frac{-\log 3}{3 \log 5-2 \log 3}$

$$
\begin{array}{ll}
\frac{1}{2} \frac{8(3 x}{5}=\frac{568}{5} \\
3^{2 x}=71 & \frac{\log _{3} 71=\frac{2 x}{2}}{2} \\
\frac{\log 3^{2 x}=\log 71}{2 \log 3} \frac{\log 71}{2 \log 3} & x=\frac{\log _{2}}{2} \\
\frac{x=\frac{\log 71}{2 \log 3}}{} &
\end{array}
$$

