
3.2 Synthetic Division and The Remainder Theorem

Recall: Long Division with Numbers

$$
\begin{aligned}
& 4047 \text { Quotient } \\
& \rightarrow 1 2 \longdiv { 4 8 5 6 7 } \leftarrow \text { Dividend } \\
& -48 \downarrow \downarrow \\
& 87 \\
& -\frac{84}{3} \text { Remainder }
\end{aligned}
$$

Terminology:
Quotient and Remainder
Divisor \quad Dividend
$f(x)=$ Dividend
$g(x)=$ Divisor
$q(x)=$ Quotient and Remainder
then,
$f(x)=g(x) q(x)=$ Divisor (Quotient + [Remainder / Divisor])

Now, long division with palymiats.

$$
\begin{array}{r}
5 x^{2}-3 x+4 \\
\frac{5 x^{3}-13 x^{2}+10 x-9}{5(x-2)} \\
\frac{5 x^{3}+10 x^{2}}{-3 x^{2}+10 x} \\
+3 x^{2}+6 x \downarrow \\
4 x-9 \\
-14 x+5 \\
-1
\end{array}
$$

What does this tell us about polynomials?

In Math 20-1: $\quad f(x)=x^{2}+7 x+6$ factors to $(x+6)(x+1)$ so x-int's are $-6,-1$.

In Math 30-1: We use synthetic division to see if there is a remainder. If there is a remainder, the divisor is not a factor of the dividend.

The Remainder Theorem:

If a polynomial, $f(x)$, is divided by $(x-a)$, the remainder is the constant $f(a)$, and dividend $=$ quotient x divisor + remainder

$$
f(x)=q(x) \cdot(x-a)+f(a)
$$

where $q(x)$ is a polynomials with degree one less that the degree of $f(x)$.

So with our quadratic example:

$$
\begin{aligned}
& f(x)=5 x^{3}-13 x^{2}+10 x-9 \\
& f(2)=5(2)^{3}-13(2)^{2}+10(2)-9 \\
& f(2)=-1 \\
& \therefore(x-2) \text { is not a factor of } 5 x^{3}-13 x^{2}+10 x-9
\end{aligned}
$$

Ex.) Use the remainder theorem to find the remainder when $P(x)=x^{3}-10 x+6$ is divided by $x-4$.

$$
\begin{array}{rl}
x-4=0 & P(4)=(4) \\
x=4 & P(4)=30
\end{array}
$$

Remainder: $30 \%(x-4)$ not a factor
Ex.) Use synthetic division to divide $4 x^{5}-3 x^{3}+7 x^{2}-6$ by $(x+1)$.

$$
\begin{aligned}
& \begin{array}{l}
x+1=0 \\
x=-1
\end{array} \quad 4 x^{3}+0 x^{4}-3 x^{3}+7 x^{2}+0 x-6 \\
& -1 \left\lvert\, \begin{array}{cccccc}
4 & 0 & -3 & 7 & 0 & -6 \\
\downarrow & -4 & 4 & -1 & -6 & 6 \\
4 & -4 & 1 & 6 & -6 & 1 \therefore(x+1) \text { iss } \\
\text { factor }
\end{array}\right. \\
& \frac{4 x^{5}-3 x^{3}+7 x^{2}-6}{(x+1)}=4 x^{4}-4 x^{3}+x^{2}+6 x-6 \quad
\end{aligned}
$$

Ex.) When $P(x)=x^{3}+4 x^{2}-x+k$ is divided by $(\underline{x}-1)$, the remainder is 3 . What is the value of ' k '?

$$
\begin{array}{r}
P(1)=3 \\
(1)^{3}+4(1)^{2}-1+k=3 \\
4+k=3 \\
-4
\end{array}
$$

$$
k=-1
$$

