

3.2 Vertical Circular Motion

Review: In order to increase speed with which a vehicle can navigate a turn, roads are banked (angled slightly). If a typical bank is 3.0° to the horizontal, what is the maximum speed a 1500 kg car can make a 200 m radius turn $(\mu=0.10)$?

We have always drawn horizontal circular motion like this:

But it really should have been drawn like this:

Because now we look at vertical circular motion like this: (\vec{F}_{g} is now at play)

Ex.) Neglecting friction, what is the minimum speed a Hot Wheels car must go around a vertical loop of radius 15.0 cm to keep from falling off?

$$
\begin{aligned}
& F_{n e t}=F_{g} \\
& F_{c}=F_{g} * \text { minimum speed to keep car on track } \\
& \frac{h_{v} v^{2}}{r}=\alpha g \\
& V^{2}=r g \\
& V=\sqrt{r g}=\sqrt{(0.15)(9.81)}=1.21 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
v \geq 1.21 \mathrm{~m} / \mathrm{s}
$$

$$
v=1.2 \mathrm{~cm} / \mathrm{s}
$$

It would seem like the force acting on the water must be acting outward to keep the water in the bucket, but it is not. The centripetal force is pointed towards the centre of the circle. And this force keeps things in a circular pattern, not a pattern where the water will fall.

Some people will refer to the "force" keeping the water in the bucket as "centrifugal force." But we know this isn't a real force. Physicists will refer to these "made up" forces as phantom forces or fictitious forces.

Ex.) An object is being swung in a vertical circle with $r=0.75 \mathrm{~m}$. What is the minimum speed needed at the top of the swing to maintain uniform circular motion of the object?

$$
\begin{aligned}
& F_{\text {net }}=F_{c}-F_{g} \\
& 0=F_{c}-F_{g} \\
& F_{c}=F_{g} \\
& \frac{\alpha v^{2}}{r}=\alpha \mathrm{\alpha g} \\
& |v|=\sqrt{r g}=\sqrt{(0.75)(9.81)} \\
& \\
& =\sqrt{7.4 \mathrm{~m} / \mathrm{s}}=2.7 \mathrm{mls}
\end{aligned}
$$

