Pre-Calculus 30 Writing Equations of Polynomial Functions

Determine the equation of each polynomial with the following characteristics. Leave the answer in factored form. P(x) = a(x-r)(x-r)(x-r)(x-r)(x-r)

1. A cubic equation; with roots at x= 3, x= -6 and x= 2 with a y-intercept of 108.

$$P(x)=q(x-3)(x+6)(x-2)$$

 $108=a(0-3)(0+6)(0-2)$
 $108=36a$
 $a=3$

(x)=3(x-3)(x+6)(x-2)

2. A function that passes through the point (2, 28) and has x-intercepts at (6, 0), (-5, 0) (0,0) and (1, 0).

$$P(x)=a(x-6)(x+5)(x)(x-1)$$

 $28=a(2-6)(2+5)(2)(2-1)$
 $28=-56a$
 $a=-\frac{1}{2}$

P(x)=-1/2X(x-6)(x+5)x

3. A function with roots at x = 3 (multiplicity of 2) and x = -1 (multiplicity of 3) and has a y-intercept of (0, 45)

$$P(x)=a(x-3)^{2}(x+1)^{3}$$

 $45=a(0-3)^{2}(0+1)^{3}$
 $45=9a$

45= a(0-3)2(0+1)3 /P(x)=5(x-3)2(x+1)3

4. A function 4^{th} degree function with roots at x = 5, x = 1, and x = -3 (multiplicity of 2) passing through the point (-2, 14)

$$P(x)=a(x-5)(x-1)(x+3)^{2}$$

$$14=a(-2-5)(-2-1)(-2+3)^{2}$$

P(x)=2/2(x-5)(x-1)(x+3)

A quadratic function with root x=1 (multiplicity of 2) passing through the point (2, -1)

$$P(x) = \alpha(x-1)^{2}$$

 $-1 = \alpha(2-1)^{2}$
 $-1 = \alpha$

$$-1 = \alpha(2-1)^{2}$$
 [P(x)=-1(x-1)²]

6. A polynomial passing through the point (3, -2.5) with x-intercepts at (-2, 0), (4, 0) and (-2, 0)

$$P(x)=a(x+2)(x-4)(x+2)$$

$$P(x)=a(x+2)^{2}(x-4)$$

$$-2.5=a(3+2)^{2}(3-4)P(x)=t/0(x+2)^{2}(x-4)$$

$$P(x) = \frac{1}{10}(x+2)^{2}(x-4)$$

-2.5 = -25 a. 7. A cubic function with a root x= 3 (multiplicity of 3) passing though (0, 54)

$$P(x) = \alpha (x-3)^3$$

 $54 = \alpha (0-3)^3$
 $54 = -27\alpha$
 $\alpha = -7$

$$P(x) = -2(x-3)^3$$

8. A function with a y-intercept at (0, 5) and a x-intercept at (-2, 0)

$$P(x) = a(x+2)^{n}$$

 $5 = a(0+2)$
 $5 = 2a$
 $a = 5h$

$$P(x) = 5/2(x+2)$$