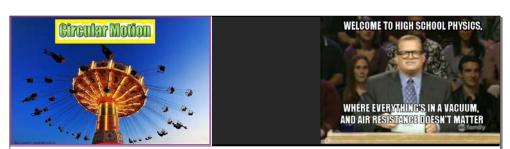


3.6 Energy

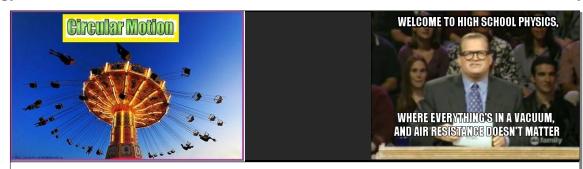
Energy - the capacity to do work, can be converted from one form to another, change in energy is called work

Gravitational Potential Energy

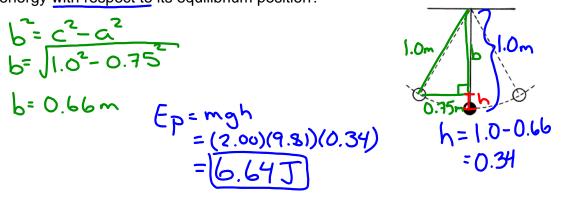


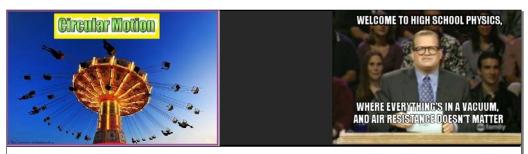
$$E_{p} = mgh$$

Kinetic Energy



$$E_k = \frac{1}{2}mv^2$$

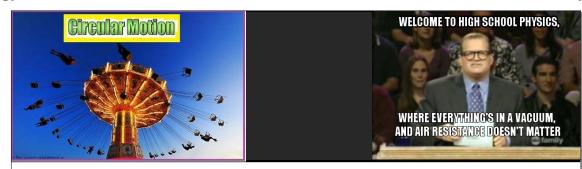



- Ex.) A 70 kg person climbed a 12 m ladder. Calculate the potential energy with respect to:
- a) The ground.
- b) The roof (11 m above the ground).
- c) A tree, 7.0 m below the top of the ladder.

a)
$$E_p = mgh = (70)(9.81)(12) = [8.2 \times 10^3 \text{J}]$$

b) $E_p = mgh = (70)(9.81)(1) = [6.9 \times 10^2 \text{J}]$

Ex.) A pendulum bob of mass of 2.00 kg is fixed from the ceiling by a string of length 1.00 m. If the bob is pulled 0.750 m to one side, what is its potential energy with respect to its equilibrium position?

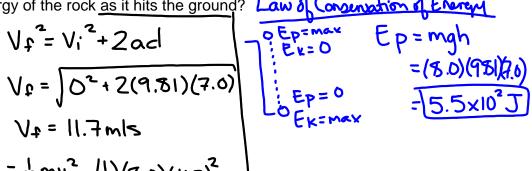


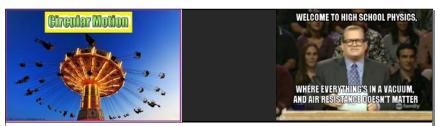
Ex.) A $\underline{10.0 \text{ N}}$ ball is accelerated uniformly from <u>rest</u> at a rate of $\underline{2.50}$ m/s². What is the kinetic energy of this object after it has accelerated a distance of $\underline{15.0 \text{ m}}$?

Fg = mg

$$V_i = 0 \text{m/s}$$
 $V_i = 0 \text{m/s}$
 V

Ex.) An 8.0 kg rock is dropped from a height of 7.0 m. What is the kinetic energy of the rock as it hits the ground? Law of Consensation of Every


$$V_{f}^{2} = V_{i}^{2} + 2acl$$


$$V_{f} = \int_{0}^{2} + 2(9.81)(7.0)$$

$$V_{f} = 11.7 \text{ m/s}$$

$$E_{K} = \frac{1}{2}mv^{2} = (\frac{1}{2})(8.0)(11.7)^{2}$$

$$= \sqrt{5.5 \times 10^{3} \text{ J}}$$

Ex.) By what factor must the kinetic energy increase to cause the speed to triple?

$$E_{K} = \frac{1}{2}mv^{2}$$

$$\frac{1}{2}m(3v)^{2}$$

$$\frac{1}{2}m^{2}$$

$$9. \frac{1}{2}mv^{2}$$

$$E_{K} = \frac{1}{2}mv^{2}$$

$$9. 305 #2,3,6,79.$$