
3.6 Energy

Energy - the capacity to do work, can be converted from one form to another, change in energy is called work

Units: Joules
Gravitational Potential Energy

$E_{p}=m g h$

Kinetic Energy

$E_{k}=\frac{1}{2} m v^{2}$

Ex.) A 70 kg person climbed a 12 m ladder. Calculate the potential energy with respect to:
a) The ground.
b) The roof (11 m above the ground).
c) A tree, 7.0 m below the top of the ladder.
a) $E_{p}=m g h=(70)(9.81)(12)=8.2 \times 10^{3} \mathrm{~J}$
b) $E_{p}=m g h=(70)(9.81)(1)=6.9 \times 10^{2} \mathrm{~J}$
c) $E_{p}=m g h=(70)(9.81)(7.0)=4.8 \times 10^{3} \mathrm{~J}$

WELCOME TO HIGHSGHOOL PHYSIOS,

Ex.) A pendulum bob of mass of 2.00 kg is fixed from the ceiling by a string of length 1.00 m . If the bob is pulled 0.750 m to one side, what is its potential energy with respect to its equilibrium position?

$$
\begin{aligned}
& b^{2}=c^{2}-a^{2} \\
& b=\sqrt{1.0^{2}-0.75^{2}} \\
& b=0.66 \mathrm{~m} \quad E_{p}
\end{aligned}=m g h \quad\left(\begin{array}{rl}
& =(2.00)(9.81)(0.34) \\
& =6.64 \mathrm{~J}
\end{array}\right.
$$

$$
h=1.0-0.66
$$

$$
=0.34
$$

Ex.) A 10.0 N ball is accelerated uniformly from rest at a rate of $2.50 \mathrm{~m} / \mathrm{s}^{2}$. What is the kinetic energy of this object after it has accelerated a distance of 15.0 m ?

$$
\begin{aligned}
F_{g} & =m g \\
10.0 & =m(9.81) \\
m & =1.02 \mathrm{~kg}
\end{aligned}
$$

$$
\begin{array}{ll}
V_{i}=0 \mathrm{~m} / \mathrm{s} & \vec{v}_{f}^{2}=\vec{v}_{2}^{2}+2 \bar{a} \bar{d} \\
\vec{a}=2.50 \mathrm{~m} / \mathrm{s}^{2} & V_{f}=\sqrt{0^{2}+2(2.5)(15)} \\
\vec{d}=15.0 \mathrm{~m} & V_{f}=8.66 \mathrm{~m} / \mathrm{s} \\
V_{f}=? &
\end{array}
$$

$$
\begin{aligned}
E_{k} & =\frac{1}{2} m v^{2} \\
& =(1 / 2)(1.02)(8.66)^{2} \\
& =38.2 \mathrm{~J}
\end{aligned}
$$

WELCOME TO HIGHSGHOOL PHYSICS,

Ex.) An 8.0 kg rock is dropped from a height of 7.0 m . What is the kinetic energy of the rock as it hits the ground? Law of Conservation of Energy

$$
\begin{aligned}
V_{f}^{2} & =V_{i}^{2}+2 \mathrm{ad} \\
V_{f} & =\sqrt{0^{2}+2(9.81)(7.0)} \\
V_{f} & =11.7 \mathrm{~m} / \mathrm{s} \\
E_{K}=\frac{1}{2} m v^{2} & =\left(\frac{1}{2}\right)(8.0)(11.7)^{2} \\
& =5.5 \times 10^{2} \mathrm{~J}
\end{aligned}
$$

$$
\begin{cases}\begin{array}{ll}
0 E_{p} \text { max } & E_{p}=m g h \\
\vdots e_{k} & =(8.0)(981)(2.0) \\
\vdots & =0 \\
E_{p}=0 & =5.5 \times 10^{2} \mathrm{~J}
\end{array}\end{cases}
$$

Ex.) By what factor must the kinetic energy increase to cause the speed to triple?

$$
\begin{aligned}
E_{k}= & \frac{1}{2} m v^{2} \\
& \frac{1}{2} m(3 v)^{2} \\
& \frac{1}{2} \cdot m \cdot 9 v^{2} \quad E_{k} \text { is } 9 x \text { greater } \\
q \cdot & \frac{\frac{1}{2} m v^{2}}{E_{k}} \quad P_{g} \cdot 305 \# 2,3,6,79 .
\end{aligned}
$$

