
3.9 Analyzing Rational Functions

Point of Discontinuity: "hole in the graph," a point on the graph that is not continuous that occurs when the rational is simplified by cancelling a term with a variable
eg.)

$$
\begin{aligned}
& y=\frac{x^{2}-x-2}{x-2} \\
& y=\frac{(x-2)(x+1)}{(x-2)} \text { Pointof } \\
& \text { Discontinuity@ } \begin{array}{l}
x=2 \\
y=2+1
\end{array} \quad(2,3) \\
& y=x+1
\end{aligned}
$$

Ex.) Determine the asymptotes, the x, y-intercepts, and the point of discontinuity for
the following:
$\frac{x \text {-int }}{x-2}$
a) $y=\frac{x^{2}-5 x+6}{x-3}$

$$
x=2
$$

$y=\frac{(x-3)(x-2}{(x-2)}$
$y=x-2$

Ex.) Determine the equation in factored form of the rational functions with HA $y=2$, VA $x=0$, and point of discontinuity $(1,5)$.
$V A: x=0$

$$
f(x)=\frac{(2 x+b)(x-1)}{x(x-1)}
$$

Pogo: (1,5) ($x-1$) cancelled

$$
5=\frac{(2(1)+b)}{1}
$$

$H A: y=2 v$

$$
\begin{aligned}
& f(x)=\frac{(2 x+3)(x-1)}{x(x-1)}=2+b \\
& =3
\end{aligned}
$$

Pg. 451 \# 4, $8 a b, 9$.

