
4.10 Sum and Difference Identities
$\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
$\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$
$\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
$\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$
$\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
$\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}$

Ex.) Determine the exact value of angles that are not multiples of the standard reference angles (ie. $0,30,45,60,90$, etc.).
$\alpha \beta$ * from unitcircle.
a) $\cos \left(105^{\circ}\right)=\cos \left(60^{\circ}+45^{\circ}\right)$
$=\cos 60^{\circ} \cos 45^{\circ}-\sin 60^{\circ} \sin 45^{\circ}$
$=\frac{1}{2} \cdot \frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{4}-\frac{\sqrt{6}}{4}$
b) $\sin 15^{\circ}=\sin \left(45^{\circ}-30^{\circ}\right)$
$=\sin 45^{\circ} \cos 30^{\circ}-\cos 45^{\circ} \sin 30^{\circ}$
$=\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2} \cdot \frac{1}{2}=\frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4}=\frac{\sqrt{(6)}-\sqrt{2})}{4}$

Ex.) Simplify the following to a single trig function:
a) $\sin 35 \cos 40+\cos 35 \sin 40$

$$
\begin{aligned}
& \text { a) } \sin 35 \cos 40+\cos 35 \sin 40 \\
& =\cos \beta+\cos \alpha \sin \beta \\
& \left.=\sin 75^{\circ}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \frac{\tan 10+\tan 35}{1-\tan 10 \tan 35} \\
& =\frac{\tan \left(10^{\circ}+35^{\circ}\right)}{=} \tan 45^{\circ} \text { simplify } \\
& =1 \text { evaluate }
\end{aligned}
$$

Ex.) Prove the following identity:

Pg. 306 \# 1abd, 2bd, 7, 8, 10, 11c, 17, 19, 20ab.

