
4.1 Discovering Trigonometry

https://betterexplained.com/articles/intuitive-guide-to-angles-degrees-andradians/

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& x^{2}+y^{2}=1
\end{aligned}
$$

Similar Triangles:
$x \quad$ ceq $\cos ^{2}+\sin ^{2}$ (

Ex.) Determine one positive and one negative co-terminal angle:
a) $\theta=120^{\circ}$

$$
\begin{aligned}
& 360^{\circ}+120^{\circ}=480^{\circ} \\
& 120^{\circ}-360^{\circ}=-240^{\circ}
\end{aligned}
$$

$2 \pi \cdot \frac{4}{4}$
b)

$$
\begin{array}{ll}
\theta=\frac{5 \pi}{4} \quad & \frac{5 \pi}{4}+\frac{8 \pi}{4}=\frac{13 \pi}{4} \\
& \frac{5 \pi}{4}-\frac{8 \pi}{4}=-\frac{3 \pi}{4}
\end{array}
$$

Ex.) Given the following angles, determine the reference angle: Pref ,ref. \mathcal{K} a) 315°本 $360^{\circ}-315^{\circ}=45^{\circ}$
b) $470^{\circ} \quad \begin{aligned} & \text { principle } x . \\ & 470^{\circ}-360^{\circ}=110^{\circ} \quad 180^{\circ}-110^{\circ}=70^{\circ}\end{aligned}$
c) $\frac{-5 \pi}{6}\left(-150^{\circ}\right) \ngtr \frac{6 \pi}{6}-\frac{5 \pi}{6}=\frac{\pi}{6}$
d) $\frac{5 \pi}{3}\left(300^{\circ}\right)$

$$
\begin{aligned}
\text { A } 2 \pi-\frac{5 \pi}{3} & =\frac{6 \pi}{3}-\frac{5 \pi}{3} \\
& =\frac{\pi}{3}
\end{aligned}
$$

Arc Length:

* θ
must be in radians.

Ex.) A circle with radius 7 cm , has a central angle of 160° that subtends an arc. What is the length of the arc?

$$
\begin{array}{ll}
160^{\circ} \times \frac{\pi}{180^{\circ}}=\frac{8 \pi}{9} & \theta=\frac{a}{r} \\
& a=\theta \cdot r \\
a & =\frac{8 \pi}{9} \cdot 7 \mathrm{~cm} \\
& a=19.5 \mathrm{~cm}
\end{array}
$$

Ex.) An angle of 1.8 subtends an arc 4.5 mm . What is the radius of the circle?

$$
\begin{aligned}
& \theta=\frac{a}{s r} \\
& r=\frac{a}{\theta}=\frac{4.5 \mathrm{~mm}}{1.8}=2.5 \mathrm{~mm}
\end{aligned}
$$

Ex.) A circle with an arc length of 25 m has a radius of 11 m . What is the central angle, to the nearest degree?

$$
\theta=\frac{a}{r}=\frac{25 m}{11 m} \approx 2.27 \ldots
$$

$2.27 \ldots \times \frac{180^{\circ}}{\pi}$

$$
\theta=130^{\circ}
$$

Pg. 175 \# 2, 4, 6, 7, 8, 9, 12ab, 13, 14a, 16.

