

Special Triangles:

$$
\begin{aligned}
& \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \\
& \frac{\sqrt{2}}{2}
\end{aligned}
$$

$$
\begin{array}{lll}
\sin 30^{\circ}=\frac{1}{2} & \sin 60^{\circ}=\frac{\sqrt{3}}{2} & \sin 45^{\circ}=\frac{\sqrt{2}}{2} \\
\cos 30^{\circ}=\frac{\sqrt{3}}{2} & \cos 60^{\circ}=\frac{1}{2} & \cos 45^{\circ}=\frac{\sqrt{2}}{2} \\
\tan 30^{\circ}=\frac{\sqrt{3}}{3} & \tan 60^{\circ}=\sqrt{3} & \tan 45^{\circ}=1
\end{array}
$$

Using the Unit Circle:
a) $\tan 45^{\circ}=\frac{\sin 45^{\circ}}{\cos 45^{\circ}}$.
b) $\tan 240^{\circ}=\frac{\sin 240^{\circ}}{\cos 240^{\circ}}$
$=\frac{\sqrt{2} / 2}{\sqrt{2} / 2}$
$=\frac{-\sqrt{3} / 2}{-1 / 2}$
$=1$
$=-\frac{\sqrt{3}}{2} \div \frac{-1}{2}$
c) $\tan \pi=\frac{\sin \pi}{\cos \pi}$
$=\frac{0}{-1}=0$
$=+\frac{\sqrt{3}}{2} \cdot \frac{2}{1}$
$=\sqrt{3}$
d) $\tan (\pi / 2)=\frac{\sin (\pi / 2)}{\cos (\pi / 2)}$
$=\frac{1}{0}$ undefined

Ex.) The point $P(5 / 6, y)$ is on the unite circle. What is/are ty) values (s) f ' y '?

$$
\begin{align*}
& x^{2}+y^{2}=1 \\
&\left(\frac{5}{6}\right)^{2}+y^{2}=1 \\
& \frac{25}{36}+y^{2}=1 \\
& y^{2}=\frac{36}{36}-\frac{25}{36} \\
& \sqrt{y^{2}}=\sqrt{\frac{11}{36}} \\
& y= \pm \frac{\sqrt{11}}{6} \\
& \text { QI: } y=\sqrt{11} / 6 \\
& \text { QIV: } y=-\sqrt{11} / 6
\end{align*}
$$

