
4.3 Trigonometric Ratios

Recall: Good oI' SOH CAH TOA. This gave us the three primary trigonometric ratios. However, they all have companions:
cosecant secant cotangent
Companions to the primary trig ratios are reciprocal trig ratios:

$$
\begin{array}{ll}
\text { cosecant: } \csc \theta=\frac{1}{\sin \theta} & \csc \theta=\frac{\text { hyp }}{\text { opp }} \\
\text { secant: } \sec \theta=\frac{1}{\cos \theta} & \sec \theta=\frac{\text { hyp }}{\text { adj }} \\
\text { cotangent: } \cot \theta=\frac{1}{\tan \theta} & \cot \theta=\frac{a d j}{\text { opp }}
\end{array}
$$

Here's what we get on the formula sheet:

$$
\begin{array}{ll}
\tan \theta=\frac{\sin \theta}{\cos \theta} & \cot \theta=\frac{\cos \theta}{\sin \theta} \\
\csc \theta=\frac{1}{\sin \theta} & \sec \theta=\frac{1}{\cos \theta} \\
\cot \theta=\frac{1}{\tan \theta} &
\end{array}
$$

Ex.) Determine the 6 trig ratios for the point $P(3,4)$ on the terminal arm of an angle in standard position.

$$
\begin{array}{ll}
\sin \theta=\frac{4}{5} & \csc \theta=\frac{5}{4} \\
\cos \theta=\frac{3}{5} & \sec \theta=\frac{5}{3} \\
\tan \theta=\frac{4}{3} & \cot \theta=\frac{3}{4}
\end{array}
$$

Ex.) Determine the 6 trig ratios for the point $P(-3,2)$ on the terminal arm of an angle in standard position.

$$
\begin{array}{ll}
\sin \theta=\frac{2}{\sqrt{13}} & \csc \theta=\frac{\sqrt{13}}{2} \\
\cos \theta=-\frac{3}{\sqrt{13}} & \sec \theta=\frac{\sqrt{13}}{-3} \\
\tan \theta=-\frac{2}{3} & \cot \theta=\frac{-3}{2}
\end{array}
$$

Ex.) If $\cos \theta=2 / 5$ in quadrant IV, determine the other 5 trigonometric ratios.

$$
\begin{aligned}
\sin \theta & =-\frac{\sqrt{21}}{5} \\
\tan \theta & =-\sqrt{21} / 2 \\
* \csc \theta & =5 /-\sqrt{21} \\
\sec \theta & =5 / 2 \\
* \cot \theta & =2 /-\sqrt{21}
\end{aligned}
$$

Rationalizing the Denominator:

$$
\begin{aligned}
& \csc \theta=\frac{-5}{\underbrace{\sqrt{21}^{2}}_{\sqrt{21}} \cdot \frac{\sqrt{21}}{\sqrt{21}}}=-\frac{5 \sqrt{21}}{21} \\
& \cot \theta=-\frac{2}{\sqrt{21}} \cdot \frac{\sqrt{21}}{\sqrt{21}}=\frac{-2 \sqrt{21}}{21}
\end{aligned}
$$

Ex.) If $\cos \theta=3 / 5$ and $\tan \theta<0$, determine the reference angle and the angle in standard position. neg.

$$
\begin{aligned}
& \text { S/ } \\
& \overbrace{5}^{9} \sqrt{3} \\
& \theta=360^{\circ}-53=\begin{array}{c}
307^{\circ} \\
\text { principle } \\
\text { angle }
\end{array}
\end{aligned}
$$

$$
\begin{array}{r}
-360^{\circ}<\theta<0 \\
-30^{\circ},-330^{\circ}
\end{array}
$$

Pg. 201 \# 1, 3, 8, 9, 10, 12.

$$
\frac{-2 \pi<\theta<2 \pi}{-\frac{11 \pi}{6},-\frac{\pi}{6}, \frac{\pi}{6}, \frac{11 \pi}{6}}
$$

