

### 4.4 The Universal Wave Equation

In Physics 20, waves will move in straight lines at constant velocities. This means we can describe the motion of a line with good ol':

$$
\vec{v}=\frac{\Delta \vec{d}}{\Delta t}
$$

But what is displacement and time of a wave?



For displacement, we measure the wavelength, $\lambda$, of the wave. This is the distance, in $m$, between any two repeating parts of the wave.

For time, we will use period, $T$, the amount of time it takes for the wave pattern to repeat.
So...the Universal Wave Equation is:



Ex.) The speed of sound in air at $0^{\circ} \mathrm{C}$ is $331 \mathrm{~m} / \mathrm{s}$. The speed of the same sound increases in air at $20^{\circ} \mathrm{C}$ to $343 \mathrm{~m} / \mathrm{s}$. If the frequency of the sound is 2.50 $\times 10^{3} \mathrm{~Hz}$, what is the difference in wavelength?
$0^{\circ} \mathrm{C}$

$$
\lambda=\frac{331}{2.50 \times 10^{3}}
$$

$$
\frac{V}{f}=\frac{f \lambda}{f}
$$

$$
\lambda=0.132 \mathrm{~m}
$$

$$
\lambda=\frac{v}{f}
$$

$$
\begin{aligned}
\text { Diff: } 0.00480 & =4.80 \times 10^{-3} \mathrm{~m} \\
& =4.80 \mathrm{~mm}
\end{aligned}
$$



Ex.) While floating in a tube on a lake, you notice that you bob up and down 4.0 times every 5.0 minutes. You estimate that the distance between the crests is 4.0 m . What is the estimated speed of the water?

$$
\begin{array}{rl}
\frac{4 \text { times }}{3009}=\frac{f}{15} \quad \frac{1}{5}=5^{-1} & V
\end{array} \begin{array}{ll} 
& =8 \lambda \\
f=0.013 \mathrm{~Hz} & \\
& =5.33 \times 10^{-2} \mathrm{~m} / \mathrm{s}
\end{array}
$$

