
4.5 Solving Quadratic Trig Equations

Factor using the substitution method:
Ex.) Solve the following for $0 \leq \theta \leq 360^{\circ}$ and $0 \leq \theta \leq 2 \pi$.
a)

$$
\begin{gathered}
\cos ^{2} \theta-\cos \theta-2=0 \quad x=\underbrace{\cos \theta} \\
x^{2}-x-2=0 \\
(x-2)(x+1)=0 \\
x-2=0 \\
x=2 \quad x=-1
\end{gathered}
$$

$$
\cos \theta=2 \quad \cos \theta=-1
$$

$\theta_{\text {ref }}=$ error $\theta_{\text {ref }}=180^{\circ}$ undefined

$$
\theta=180^{\circ} \quad \theta=\pi
$$

b) $\tan ^{2} \theta-5 \tan \theta+4=0$
$a=\tan \theta$

$$
\begin{aligned}
& a^{2}-5 a+4=0 \\
& (a-1)(a-4)=0 \\
& a=1 \quad a=4 \\
& \tan \theta=1 \tan \theta=4 \\
& \text { Ore }=45^{\circ} \text { Ore }=76^{\circ} \quad 45,76,225,256^{\circ} . \\
& 5 \quad \frac{\pi}{4}, \frac{19 \pi}{45}, \frac{5 \pi}{4}, \frac{64 \pi}{45} .
\end{aligned}
$$

c) $\csc ^{2} x-1=0$
$a^{2}-1=0$
or
or

$$
(a+1)(a-1)=0
$$

$$
a= \pm 1
$$

$$
\begin{aligned}
a^{2}-1 & =0 \\
\sqrt{a^{2}} & =\sqrt{1} \\
a & = \pm 1
\end{aligned}
$$

$$
\begin{array}{rlrl}
a & =1 & a=-1 \\
\csc x & =1 & \csc x=-1 \\
\frac{1}{\sin x}=\frac{1}{1} & \frac{1}{\sin x}=-\frac{1}{1} \\
\sin x=1 & \sin x=-1 \\
x=90^{\circ} & & x=270^{\circ} \\
x=\pi / 2 & x=3 \pi / 2
\end{array}
$$

d)

$$
\begin{aligned}
& \cos ^{2} x-\cos x=0 \quad \omega=\cos x \\
& \omega^{2}-\omega=0 \\
& \omega(\omega-1)=0 \\
& * \omega=0 \quad \omega=1 \\
& \cos x=0 \quad \cos x=1 \\
& x=90^{\circ}, 270^{\circ}, 0,360^{\circ} \\
& \frac{\pi}{2}, \frac{3 \pi}{2}, 0,2 \pi
\end{aligned}
$$

