
4.8 Solving Trig Equations with General Solutions

When giving a general solution for a trig equations, it means that there are infinite solutions as you can rotate around an infinite angle.

Ex.) For the following trig equations, give (a) the solution for $\left[0^{\circ}, 360^{\circ}\right.$) and (b) the general solution.
a) $2 \cos \theta=\sqrt{ } 2$

$$
\cos \theta=\frac{\sqrt{2}}{2}
$$

a) $\theta=45^{\circ}, 315^{\circ}$

STA
TH
b) General Solution

b) $2 \cos ^{2} x-1=0$

$$
\begin{aligned}
& 2 \cos ^{2} x=1 \\
& \cos ^{2} x=\frac{1}{2} \\
& \cos x= \pm \sqrt{\frac{1}{2}}=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}= \pm \frac{\sqrt{2}}{2} \\
& x=45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ} .
\end{aligned}
$$

a) $x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$.
b) $\frac{\pi}{4}+2 \pi n, n \in I$

$$
\begin{aligned}
& \frac{3 \pi}{4}+2 \pi n, n \in I \\
& \frac{5 \pi}{4}+2 \pi n, n \in I \\
& \frac{7 \pi}{4}+2 \pi n, n \in I
\end{aligned} \quad \text { OR } \frac{\pi}{4}+\frac{\pi}{2} n, n \in I
$$

c) $16==\underbrace{\operatorname{cosis}[\pi / 6 \mid x]+14}$ Numerical Response: Solve to $y_{1} \quad y_{2}$

$$
\begin{aligned}
& x=2.35 \\
& x=9.65
\end{aligned}
$$

$$
\begin{aligned}
& P=\frac{2 \pi}{\frac{\pi}{6}}=2 \pi \frac{6}{T} \\
&=12
\end{aligned} \begin{aligned}
& \text { the nearest } \\
& \text { hundredth. }
\end{aligned}
$$

d) $10=6 \sin [(\pi / 4) x]+8 \quad O \leq x<2 \pi$

Pg. 275 \# 1, 4, 5, 6, 10.

