
4.9 Trig Identities

When working with Trig Identities, you can prove them three ways:

1) Graphically: LS = RS $\left(y_{1}=y_{2}\right)$ and see if the graphs overlap.
2) Numerically: Substitute an angle into the equations and check to see if LS $=$ RS.
3) Algebraically: Simplify the identities using the formula sheet.

* This will be presented in a "Two-Column Proof"/"T-Form Proof" arrangement. You never cross the equal sign.
* Most problems can be solved by changing to sin and cosine.

Common Misconception:

$$
\sin \left(x^{2}\right) \underbrace{\sin ^{2} \text { vs. }}_{(\sin x)^{2}}
$$

Helpful Understandings:
$\tan x=\frac{\sin x}{\cos x}$
$\sec x=\frac{1}{\cos x}$
$\cot x=\frac{\cos x}{\sin x}$
$\tan ^{2} x=\frac{\sin ^{2} x}{\cos ^{2} x}$
$\sec ^{2} x=\frac{1}{\cos ^{2} x}$
$\cot ^{2} x=\frac{\cos ^{2} x}{\sin ^{2} x}$
$\csc x=\frac{1}{\sin x}$
$\csc ^{2} x=\frac{1}{\sin ^{2} x}$
$\cot ^{2} x=\frac{1}{\tan ^{2} x}$

Ex.) Prove the following identities numerically:
a) $\sin \theta \cot \theta=\cos \theta$, when $\theta=30^{\circ}$

$$
\begin{array}{c|c}
\sin 30^{\circ} \cdot \cot 30^{\circ} & \cos 30^{\circ} \\
0.5 \cdot \frac{1}{\tan 30^{\circ}} & 0.866 \ldots \\
0.5 \cdot 1.73 \ldots & \\
0.866 &
\end{array}
$$

* calculator mode needs to change**

$$
L S=R S
$$

b) $\tan ^{2} x=\sec ^{2} x-1$ when $x=\pi / 7$

$\tan ^{2} x$	$\tan ^{2} x$	from formula shat:
$\tan ^{2}\left(\frac{\pi}{7}\right)$	$(\tan (\pi / 7))^{2}$	$1+\tan ^{2} x=\sec ^{2} x$
$0.2319 \ldots$	$0.2319 \ldots$	
	$L S=R S$	

Ex.) Prove the following identities algebraically: replace from formula sheet
a) $\frac{\sin x}{\tan x}=\cos x, \tan x \neq 0$ $\tan x$

$$
\begin{aligned}
& \text { b) } \frac{1}{\cos x}-\frac{\cos x}{1}=\sin x \tan x \text { * common denominator. } \\
& \frac{1}{\cos x}-\frac{\cos x}{1} \cos x x \sin x \cdot \frac{\sin x}{\cos x} \\
& \begin{array}{c}
\frac{1-\cos ^{2} x}{\cos x} \\
\frac{\sin ^{2} x}{\cos x}
\end{array} \\
& \frac{\sin ^{2} x}{\cos x} \\
& \text { * } \sin ^{2} x+\cos ^{2} x=1 \\
& \sin ^{2} x=1-\cos ^{2} x \\
& L S=R S_{7 x}
\end{aligned}
$$

* fraction within afraction \Rightarrow multiply by reciprocal

$$
\sin x \div \frac{\sin x}{\cos x}
$$

汹 QED. and make $L S=R S$.

e) $(\tan x-1)^{2}=\sec ^{2} x-2 \tan x$

$L S=R S_{x}$

$(x-1)(x-1)$

$$
\text { f) }(\sin x+\cos x)^{2}+(\sin x-\cos x)^{2}=2
$$

* FOIL

$$
\begin{gathered}
\sin ^{2} x+2 \sin x+\cos x+\cos ^{2} x+\sin ^{2} x-2 \sin x \cos x+c \\
2 \sin ^{2} x+2 \cos ^{2} x \\
2\left(\sin ^{2} x+\cos ^{2} x\right) \\
2 \cdot 1 \\
2
\end{gathered}
$$

*Trick for fractions with

$$
\begin{aligned}
& \frac{1+\cos \theta=\frac{\sin \theta}{\sin \theta}(1-\cos \theta) \frac{(1+\cos \theta)}{(1+\cos \theta)}}{\left\lvert\, \begin{array}{cc}
\frac{\sin \theta+\sin \theta \cos \theta}{1-\cos ^{2} \theta} & (x+1)(x-1) \\
\frac{\sin \theta+\sin \theta \cos \theta}{\sin ^{2} \theta} & x^{2}+x-x-1 \\
\sin ^{2} \theta+\cos ^{2} \theta=1
\end{array}\right.} \begin{array}{l}
\frac{x^{2}-1}{\frac{\sin \theta(1+\cos \theta)}{\sin ^{2} \theta}} \\
\frac{1+\cos \theta}{\sin \theta}
\end{array}
\end{aligned}
$$

