

Ex.) Determine the number of arrangements of the letters in the word ORANGES:
a) with no restrictions

$$
\underline{7} \cdot \underline{6} \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=7!=5040
$$

b) starting with the letter R

$$
\frac{1}{R} \cdot \frac{5 \cdot 4}{4} 3 \cdot 2 \cdot 1=6!=720
$$

c) with all the vowels together

$$
\begin{aligned}
\text { 3. 2. 1 } 43^{3} j \underline{2} j & =3!415 \\
\times 5 & =3!5! \\
& =720
\end{aligned}
$$

Ex.) Determine the number of arrangements of the letters in the word BRAINS:
a) with no restrictions

$$
6!=720
$$

b) with all the vowels together

$$
\begin{aligned}
& \frac{2.1}{2}, 4 ; \frac{3}{2} ; \frac{2}{2} j=2!5!=240 \\
& 720-240=480 \\
& \begin{aligned}
\text { total }- \text { vowels } \\
\text { together }
\end{aligned}=\begin{array}{c}
\text { vowels } \\
\text { Not } \\
\text { together }
\end{array}
\end{aligned}
$$

Repetitions: - identical objects, repeating letters - divide by the repeats

Ex.) KISSING
a) no restrictions

$$
\frac{\text { restiticions }}{\frac{7!}{2!2!}}=\frac{7!}{4}=1260
$$

b) SS are first

$$
\frac{\frac{2 \cdot 5}{5} 5 \cdot 4 \cdot 3-2}{2!2!}=\frac{215!}{5 \cdot 5!}=\frac{5!}{2}=60
$$

Ex.) You have 15 lollipops and an equal amount of red, green, yellow. How many possible arrangements are there?

$$
\begin{aligned}
\frac{15!}{\text { total }} \quad & (5!5!5!) \\
& 15!(5!5!5!)
\end{aligned}
$$

