
5.3 Permutations and Combinations
ORDER MATTERS: Permutations
Order DOESN"T Matter: Combinations
$0!=1$
$n!=n(n-1)(n-2) \ldots$
$n \in \mathbb{N}$
a) $\frac{n!}{(n-3)!}=\frac{n(n-1)(n-2)(n-3)!}{(n-3)!}=n(n-1)(n-2)$
b) $\begin{aligned} \frac{(n+1)!}{(n-1)!}=\frac{(n+1)(n+1)(n-1)!}{(n-1)!} & =n(n+1) \\ & =n^{2}+n\end{aligned}$

Ex.) Solve for n.
a) $\frac{(n+1)!}{(n-1)!}=6$
b) $\frac{(n+2)!}{n!}=\frac{12 x x}{x!}$
$\frac{(n+1)(n)(n-1)!}{(n-1)!}=6$
$\frac{(n+2)(n+1)(n)!}{n!}=12$
$n^{2}+n=6$
$n^{2}+3 n+2=12$
$n^{2}+n-6=0$
$n^{2}+3 n-10=0$
$(n+3)(n-2)=0$
$(n+5)(n-2)=0$
$n=13 \quad n=2$
neoN
$n=5 n=2$

Permutations: arrangements, order of objects

Ex.) A class of 32 students are voting for a president, vice president, and secretary. How many possible arrangements are there?

$$
\begin{aligned}
{ }_{32} P_{3}=\frac{32!}{(32-3)!}=\frac{32!}{29!} & =\frac{32 \cdot 31 \cdot 30 \cdot 291}{29!} \\
& =29760
\end{aligned}
$$

Ex.) There are 10 different book on a shelf. Four are chosen to be arranged for a display. How many possible arrangements are there?

$$
{ }_{10} P_{4}=5040
$$

Ex.) For a play there are 4 male roles and 3 females roles. If there are 6 actors and 8 actresses to pick from, how many casts are available?
Actors \& Actresses

$$
{ }_{6} P_{4} \times{ }_{8} P_{3}
$$

$$
360 \times 336
$$

and - mulitply
or - add

120960

Combinations: order does NOT matter

Ex.) Lotto 6-49 gets its name from the fact that of 49 numbers, 6 are chosen. How many combinations are possible in Lotto 6-49?

$$
{ }_{49} C_{6}=13983816
$$

Ex.) A group of 15 people(9 females, 6 males) will form a subcommittee with 7 people. How many combinations are there with
a) exactly 3 emales $\frac{3 F}{C_{3}}$ and $\frac{4 m}{C_{6}}=84 \cdot 15=1260$
b) 7 females

$$
{ }_{9} C_{7}=36
$$

c) at least four females
$4 F$ and $3 \mathrm{~m}, O R$ SFand 2 m , $O R$, 6 Fand $1 m$ OR, $7 F$ $=\left({ }_{9} C_{4}\right)\left({ }_{6} C_{3}\right)+\left({ }_{9} C_{5}\right)\left({ }_{6} C_{2}\right)+\left({ }_{9} C_{6}\right)\left({ }_{6} c_{1}\right)+{ }_{9} C_{7}$
$=\binom{9}{4} \cdot\binom{6}{3}+\binom{9}{5}\binom{6}{2}+\left(\begin{array}{l}\text { *Parms: Pg. } 524 \text { \#2, } 5, \\ \text { *ombs: } \\ 6\end{array}\right)\binom{$ Pg. 534 \#1, 4, }{1}$+\binom{9}{7}$
$=2520+1890+504+36$
$=4950$

