
5.4 Binomial Expansion

Ex.) Expand $(x+3)^{3}=(x+3)(x+3)(x+3)$

$=x^{3}+3 x^{2}+6 x^{2}+18 x+9 x+27$
$=x^{3}+9 x^{2}+27 x+27$

In the expansion of $(x+y)^{n}$, written in descending powers of x, the general term is $t_{k+1}={ }_{n} C_{k} x^{n-k} y^{k}$.

Now expand ($x+3$)

$$
\begin{aligned}
& t_{1}={ }_{3} C_{0}(x)^{3-0}(3)^{0}=(1)\left(x^{3}\right)(1)=x^{3} \\
& t_{2}={ }_{3} C_{1}(x)^{3-1}(3)^{1}=3\left(x^{2}\right)(3)=9 x^{2} \\
& t_{3}={ }_{3} C_{2}(x)^{3-2}(3)^{2}=3(x)(9)=27 x \\
& t_{4}={ }_{3} C_{3}(x)^{3-3}(3)^{3}=1(1)(27)=27 \\
& x^{3}+9 x^{2}+27 x+27
\end{aligned}
$$

Connection between \# of terms and the exponent of a binomial:

$$
\begin{aligned}
& (x+2)^{1} \\
& (x+2)^{2} \\
& (x+3)^{3}
\end{aligned}
$$

2
3
4
Ex.) $(3 a-4 b)^{3 x-6}, 22$ terms

$$
\begin{aligned}
3 x-6 & =21 \\
3 x & =27 \\
x & =9
\end{aligned}
$$

Specific Term in a Binomial Expansion:

$$
\begin{aligned}
& (\underline{x}+y)^{n} \\
& \left.t_{k+1}=n_{n} c_{k}\left(\frac{x}{T}\right)^{n-k}(y)^{k}\right)_{\text {second teem }} \\
& \text { firsterm } \\
& \text { in binomial } \\
& \text { in binomial } \\
& t_{6}=t_{5+1} \\
& \text { The ' } k \text { ' value is always } \\
& t_{30}=t_{29+1} \\
& \text { one less than the term \#. }
\end{aligned}
$$

Ex.) Determine the seventh term in the expansion of $(x+4)^{11}$.

$$
=1892352 x^{5}
$$

$$
\begin{aligned}
& n=11 \\
& k=6 \\
& x=x \\
& y=4
\end{aligned}
$$

Ex.) Determine the fourth term in the expansion of $\left(3 x^{2}-4 y\right)^{7}$.

$$
\begin{aligned}
t_{4}=t_{3+1} & ={ }_{7} c_{3}\left(3 x^{2}\right)^{7-3}(-4 y)^{3} \\
& =(35)\left(81 x^{8}\right)\left(-64 y^{3}\right) \\
\left(x^{2}\right)^{4} & =-181440 x^{8} y^{3}
\end{aligned}
$$

Ex.) Determine the mididel termini in the expansion of $(3 x-5)^{5},-7$ terms

$$
\begin{aligned}
t_{4}=t_{3+1} & ={ }_{6} c_{3}(3 x)^{6-3}(-5)^{3} \\
& =20\left(27 x^{3}\right)(-125) \\
& \left.=-67500 x^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex.) Determine the ninth term in the expansion of }(3-2 x)^{14} \text {. } \\
& t_{9}=t_{8+1}={ }_{14} C_{8}(3)^{14-8}(-2 x)^{3} \\
& =(3003)(729)\left(256 x^{8}\right) \\
& =560431872 x^{8}
\end{aligned}
$$

Ex.) Determine the numerical coefficient of the term with x^{4} in the expansion of $(4-3 x)^{6}$.

$$
\begin{aligned}
& { }^{n} C_{k}(x)^{-c}(y)^{6-k}(y)^{6} \\
= & { }^{C} C_{k}(4)^{-k|l|}(-3 x)^{k-} \\
= & 15(16)\left(81 x^{4}\right) \\
= & 19440 x^{4}
\end{aligned}
$$

Ex.) Determine the numerical coefficient of the term with x^{7} in the expansion: $(3 x+5)^{10}$.

$$
\begin{aligned}
& { }^{10}(3 x)^{C-1}(5)^{3} \\
= & (120)\left(2187 x^{7}\right)(125) \\
= & 32805000 x^{7}
\end{aligned}
$$

Ex.) In the expansion of $(x-b)^{12}$, a term is $(309375 / 16) x^{8}$. The value of ' b ' is \qquad

