Look at run as

the change in the Y's the change in the X's

Unit 5: Linear Equations

5.4 Parallel and Perpendicular Lines

Consider two lines with slopes m₁ and m₂.

* The lines are PARALLELif they have the same slope.

hes are PARALLEL if they have the same

$$Ex.) M_1 = \frac{1}{2} \qquad M_2 = \frac{3}{4}$$

** The lines are PERPENDICULAR if the product of their slopes is <u>-1</u>.

Ex.)
$$\frac{2}{3} \cdot \frac{3}{2} = 6 = 1$$

And/or the slopes are negative reciprocals of each other.

Ex.)

$$d_i$$
: C :

 d_i : C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

 C :

the change in the Y's the change in the X's

$$=\frac{3-(-1)}{4-(-2)}=\frac{4}{6}=\frac{2}{3}$$

- Ex.) Consider the line segment AC with a slope of 3/4.
- a) Write the slope of line segment GH which is parallel to AC.

b) Write the slope of line segment BF which is perpendicular to AC.

5.4 Parallel and Perpendicular Lines.notebook

December 01, 2016

Look at run as

the change in the Y's the change in the X's

$$=\frac{3-(-1)}{4-(-2)}=\frac{4}{6}=\frac{2}{3}$$

Ex.) Determine if the following are parallel, perpendicular or neither.

a)
$$m_1 = 1$$
, $m_2 = 3$

$$+$$
b) $m_1 = \frac{5}{7}$, $m_2 = \frac{14}{10} = \frac{1}{5}$

L, //L2
Parallel

neither

Look at run as

the change in the Y's the change in the X's

$$=\frac{3-(-1)}{4-(-2)}=\frac{4}{4}=\frac{2}{3}$$

Ex.) If P is the point
$$(4, 7)$$
 and Q is the point $(6, -2)$, find the slope of a line segment;

$$PQ = \frac{12-1}{2} = -2$$
a) parallel to line segment PQ.

b) perpendicular to line segment PQ.

$$m = \frac{2}{9} = \frac{4}{18} = \frac{6}{27}$$