\qquad
Draw an initial function of your choosing on the grid. It needs to have an x-intercept and a y intercept. This will be $y=f(x)$. Use the same placement for each question. Transform $y=f(x)$ to make the new graph, $g(x)$. Sketch each transformation, label $f(x)$ and $g(x)$, and the fill in the chart. State domain and range in both set and interval notations.

1. $g(x)=f(x+3)$

	$g(x)$
Domain	
Range	
x-intercept	
y-intercept	
Invariant Points	
Description	

2. $g(x)+6=f(x)$

	$g(x)$
Domain	
Range	
x-intercept	
y-intercept	
Invariant Points	
Description	

3. $g(x)=f(-x)$

	$g(x)$
Domain	
Range	
x-intercept	
y-intercept	
Invariant Points	
Description	

4. $(x, y) \rightarrow(x,-y)$

	$g(x)$
Domain	
Range	
x-intercept	
y-intercept	
Invariant Points	
Description	

5. $(x, y) \rightarrow\left(x, \frac{y}{2}\right)$

	$g(x)$
Domain	
Range	
x-intercept	
y-intercept	
Invariant Points	
Description	

6. $g(x)=f(2 x)$

	$g(x)$
Domain	
Range	
x-intercept	
y-intercept	
Invariant Points	
Description	

7. The domain of the graph $y=f(x)$ is $-2 \leq x \leq 6$. What would the domain of the graph $y=f(x+6)$ become?
8. The range of the graph $y=f(x)$ is $-4 \leq y \leq 4$. What would the range of the graph $y=f(x)+3$ become?
9. A function $y=f(x)$ has the range $-3 \leq y \leq 5$. What is the range of the function $y=-f(x)$
10. A function $y=f(x)$ has the domain $-2 \leq x \leq 4$. What is the domain of the function $y=f(-x)$
11. A function $y=f(x)$ has the domain $-2 \leq x \leq 4$. What is the domain of the function $y=f(2 x)$
12. A function $y=f(x)$ has the range $-3 \leq y \leq 5$. What is the range of the function $y=3 f(x)$
13. The point $(2,-6)$ lies on the graph $y=f(x)$, name a point which must lie on $y=f(x-3)$
14. The point $(3,4)$ is on the function $y=f(x)$, name a point which must lie on $y+2=f(x) ?$
15. If the point $(4,7)$ lies on the graph of $y=f(x)$, name a point which must lie on $y=f(-x)$
16. If the point $(2,3)$ lies on the graph of $y=f(x)$, name a point which must lie on $y=-f(x)$
17. If the point $(4,5)$ lies on the graph of $y=f(x)$, name a point which must lie on $y=f(3 x)$
18. If the point $(12,30)$ lies on the graph of $y=f(x)$, name a point which must lie on $3 y=f(x)$
19. The point $(2,-3)$ lies on the graph $y=f(x)$, name a point which will exist if x is replaced with $x-5$.
20. The point $(3,4)$ is on the function $y=f(x)$, name a point which will exist if y is replaced with $y+7$.
21. If the point $(-2,-3)$ lies on the graph of $y=f(x)$, name a point which will exist if x is replaced with (-x)
22. If the point $(2,3)$ lies on the graph of $y=f(x)$, name a point which will exist if y is replaced with (-y)
23. If the point $(4,5)$ lies on the graph of $y=f(x)$, name a point which will exist if x is replaced with $3 x$.
24. If the point $(12,30)$ lies on the graph of $y=f(x)$, name a point which will exist if y is replaced with $\frac{1}{6} y$.
25. If the point (x, y) lies on the graph $y=f(x)$, what point lies on the graph $y=2 f(5 x)$

