- 1. Solve each of the following equations given the domain $0^{\circ} \le \theta < 360^{\circ}$.
 - a) $\sin \theta = -\frac{1}{2}$

b) $\cos \theta = \frac{\sqrt{3}}{2}$

c) $\tan \theta = 0$

d) $\csc \theta = -\sqrt{2}$

e) $\cot \theta = \frac{\sqrt{3}}{3}$

f) $\sec \theta = 1.064$

- 2. Solve each of the following equations given the domain $0 \le \theta < 2\pi$.
 - a) $\sin \theta = \frac{\sqrt{2}}{2}$

- b) $\cos \theta = -\frac{1}{2}$
- c) $\tan \theta = 1$

- d) $\cot \theta$ is undefined
- e) $\csc \theta = -2$

f) $\sec \theta = \frac{2\sqrt{3}}{3}$

3. If $\tan \theta = \frac{5}{2}$, where $0 \le \theta < 2\pi$, determine the largest positive value of θ , to the nearest tenth.

4. Algebraically determine the exact solutions for $6\cos\theta + 3 = 0$, where $-2\pi \le \theta < 2\pi$.

5. Consider the equation: $\sin^2\theta - \sin\theta = 0$. Algebraically determine the exact solutions where $0^\circ \le \theta < 360^\circ$.

6. Determine the exact roots of each equation algebraically over the given domain.

a)
$$4\cos^2 \beta - 1 = 0$$

$$0^{\circ} \le \beta \le 360^{\circ}$$

b)
$$3 \tan \theta + 1 = \tan \theta - 1$$

$$-2\pi \le \theta < 2\pi$$

c)
$$4\cos^2\theta + 2\cos\theta - 2 = 0$$

d)
$$\sin \theta = 0.91$$

$$0 \le \theta < 2\pi$$

approximate roots $0 \le \theta < 2\pi$