Name: \qquad
Assignment 2: 4.4-4.5 Solving Trig Equations

1. Solve each of the following equations given the domain $0^{\circ} \leq \theta<360^{\circ}$.
a) $\sin \theta=-\frac{1}{2}$
b) $\cos \theta=\frac{\sqrt{3}}{2}$
c) $\tan \theta=0$
d) $\csc \theta=-\sqrt{2}$
e) $\cot \theta=\frac{\sqrt{3}}{3}$
f) $\sec \theta=1.064$
2. Solve each of the following equations given the domain $0 \leq \theta<2 \pi$.
a) $\sin \theta=\frac{\sqrt{2}}{2}$
b) $\cos \theta=-\frac{1}{2}$
c) $\tan \theta=1$
d) $\cot \theta$ is undefined
e) $\csc \theta=-2$
f) $\sec \theta=\frac{2 \sqrt{3}}{3}$
3. If $\tan \theta=\frac{5}{2}$, where $0 \leq \theta<2 \pi$, determine the largest positive value of θ, to the nearest tenth.
4. Algebraically determine the exact solutions for $6 \cos \theta+3=0$, where $-2 \pi \leq \theta<2 \pi$.
5. Consider the equation: $\sin ^{2} \theta-\sin \theta=0$. Algebraically determine the exact solutions where $0^{\circ} \leq \theta<360^{\circ}$.
6. Determine the exact roots of each equation algebraically over the given domain.
a) $4 \cos ^{2} \beta-1=0$
b) $3 \tan \theta+1=\tan \theta-1$
$0^{\circ} \leq \beta \leq 360^{\circ}$
$-2 \pi \leq \theta<2 \pi$
c) $4 \cos ^{2} \theta+2 \cos \theta-2=0$
d) $\sin \theta=0.91$
$0 \leq \theta<2 \pi$
approximate roots $0 \leq \theta<2 \pi$
