

Lesson 16: The Mole

- Scientists cannot count individual atoms and molecules, so they place large numbers of them into groups.
- This group is called a mole, 1 mol is Avagadro's number
- $1 \mathrm{~mol}=6.0 \times 10^{23}$ (atoms, particles, molecules)

602000000000000000000000
Molar Mass

- Mass of one mole of a substance is called the molar mass, recorded as the atomic molar mass
- Underneath the atomic name on the periodic table

Ex.) Determine the following:
a) What is the molar mass of methane gas: $\mathrm{CH}_{4(g)}$?

$$
\begin{aligned}
& 1 \text { carbon }+4 \text { hydrogen } \\
= & 1(12.01)+4(1.01) \\
= & 16.05 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

b) What is the molar mass of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4(9)}$?

$$
\begin{aligned}
& =3(14.01)+12(1.01)+1(30.97)+4(16.00) \\
& =149.12 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

c) What is the molar mass of carbon dioxide?

$$
\begin{aligned}
& \mathrm{CO}_{2}(\mathrm{~g}) \\
& 1(12.01)+2(16.00) \\
= & 44.01 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

From the data booklet (pg. 10), this equation can be used to find any of the following things:

Ex.) How many moles of silicon are in a 56.18 g sample?

$$
n=\frac{m}{M}=\frac{56.185}{28.09 \mathrm{~g} / \mathrm{mol}}=2.00 \mathrm{~mol}
$$

Ex.) What is the mass of 10.0 mol of water? $\mathrm{H}_{2} \mathrm{O} 2(1.01)+16.00$ $M \cdot n=\frac{m}{A} \cdot A$ $=18.02 \mathrm{~g} / \mathrm{mol}$

$$
m=M \cdot n=\frac{18.02 \mathrm{~g}}{\frac{m o t}{m} \cdot 10.0 m o t}=180.2 \mathrm{~g}
$$

Ex.) How many moles are in 360 g of glucose?

$$
\begin{aligned}
& \left.n=\frac{m}{m}=\frac{360 \phi}{180.18 \phi / \mathrm{mol}}=2.00 \mathrm{~mol}\right) 6(12.01)+12(1.01)+6(16.00) \\
& =180.18 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

$$
\begin{aligned}
& 1(14.01)+3(1.01) \\
& =17.04 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

$$
2.00
$$

Worksheet

$$
\begin{aligned}
& \begin{array}{l}
n=\frac{m}{x} \\
m=n \cdot m \\
m=(5.00 \mathrm{mot})\left(\frac{17.04 \mathrm{~g}}{m}\right)=85.20 \mathrm{~g}
\end{array}
\end{aligned}
$$

$$
5=\frac{m}{17.04}
$$

