

Mathematics 30-1

Student Workbook

Unit

Lesson 1: Basic Transformations Approximate Completion Time: 2 Days

$$
y=a f[b(x-h)]+k
$$

Lesson 2: Combined Transformations Approximate Completion Time: 2 Days

$f^{-1}(x)$
Lesson 3: Inverses
Approximate Completion Time: 2 Days

$$
\begin{array}{ll}
(f+g)(x) & (f-g)(x) \\
(f \cdot g)(x) & \left(\frac{f}{g}\right)(x)
\end{array}
$$

Lesson 4: Functions Operations Approximate Completion Time: 2 Days

$$
f \circ g=f(g(x))
$$

Lesson 5: Function Composition Approximate Completion Time: 3 Days

Complete this workbook by watching the videos on www.math30.ca. Work neatly and use proper mathematical form in your notes.

Transformations and Operations LESSON ONE - Basic Transformations Lesson Notes

Example 1
Draw the graph resulting from each transformation. Label the invariant points.

Graphing Stretches

Vertical Stretches

a) $y=2 f(x)$

b) $y=\frac{1}{2} f(x)$

Horizontal Stretches
c) $y=f(2 x)$

d) $y=f\left(\frac{1}{2} x\right)$

Transformations and Operations LESSON ONE - Basic Transformations Lesson Notes

Example 2
Draw the graph resulting from each transformation. Label the invariant points.
a) $y=\frac{1}{4} f(x)$

c) $y=f\left(\frac{1}{5} x\right)$

b) $y=3 f(x)$

d) $y=f(3 x)$

Transformations and Operations LESSON ONE - Basic Transformations Lesson Notes

Example 3
Draw the graph resulting from each transformation. Label the invariant points.

Graphing Reflections

Reflections

a) $y=-f(x)$
b) $y=f(-x)$

Inverses

c) $x=f(y)$

Transformations and Operations LESSON ONE - Basic Transformations Lesson Notes

Example 4
Draw the graph resulting from each transformation. Label the invariant points.
a) $y=-f(x)$

b) $y=f(-x)$

c) $x=f(y)$

Transformations and Operations LESSON ONE - Basic Transformations Lesson Notes

Example 5 Draw the graph resulting from each transformation.

Graphing Translations

Vertical Translations

a) $y=f(x)+3$
b) $y=f(x)-4$

Horizontal Translations
c) $y=f(x-2)$
d) $y=f(x+3)$

Transformations and Operations LESSON ONE - Basic Transformations Lesson Notes

Example 6 Draw the graph resulting from each transformation.

Graphing Translations
a) $y-4=f(x)$

c) $y=f(x-5)$

b) $y=f(x)-3$

d) $y=f(x+4)$

Transformations and Operations LESSON ONE - Basic Transformations Lesson Notes

Example 7

Draw the transformed graph. Write the transformation as both an equation and a mapping.
a) The graph of $f(x)$ is horizontally stretched by a factor of $\frac{1}{2}$.

Transformation Equation:
b) The graph of $f(x)$ is horizontally translated 6 units left.

Transformation
Equation:

Transformation Mapping:

Transformation Mapping:

Transformations and Operations LESSON ONE - Basic Transformations Lesson Notes

c) The graph of $f(x)$ is vertically translated 4 units down.

Transformation
Equation:
d) The graph of $f(x)$ is reflected in the x-axis.

Transformation
Equation:

Transformation Mapping:

Transformation Mapping:

Transformations and Operations LESSON ONE - Basic Transformations Lesson Notes

Example 8

Write a sentence describing each transformation, then write the transformation equation.

Describing a Transformation

Original graph:

Transformed graph: \qquad
Think of the dashed line as representing where the graph was in the past, and the solid line is where the graph is now.

Transformation Equation:

Transformation Mapping:

Transformation Mapping:

Transformations and Operations LESSON ONE - Basic Transformations Lesson Notes

Transformation

Equation:

Transformation
Equation:

Transformation Mapping:

Transformation Mapping:

Transformations and Operations LESSON ONE - Basic Transformations Lesson Notes

Example 9
Describe each transformation and derive the equation of the transformed graph. Draw the original and transformed graphs.

Transforming an
Existing Function (stretches)
a)

Original graph: $f(x)=x^{2}-1$
Transformation: $y=2 f(x)$

Transformation Description:

New Function After Transformation:

b) Original graph: $f(x)=x^{2}+1$ Transformation: $y=f(2 x)$

Transformation Description:

New Function After Transformation:

Transformations and Operations LESSON ONE - Basic Transformations Lesson Notes

c)

Original graph: $f(x)=x^{2}-2$
Transformation: $y=-f(x)$

Transformation Description:

New Function After Transformation:

Transforming an Existing Function (reflections)

d) Original graph: $f(x)=(x-6)^{2}$

Transformation: $y=f(-x)$

Transformation
Description:

New Function
After Transformation:

Transformations and Operations LESSON ONE - Basic Transformations Lesson Notes

Example 10

Describe each transformation and derive the equation of the transformed graph. Draw the original and transformed graphs.

Transforming an Existing Function (translations)
a)

Original graph: $f(x)=x^{2}$
Transformation: $y-2=f(x)$

Transformation
Description:

New Function
After Transformation:

b) Original graph: $f(x)=x^{2}-4$ Transformation: $y=f(x)-4$

Transformation Description:

New Function
After Transformation:

Transformations and Operations LESSON ONE - Basic Transformations Lesson Notes

c)
Original graph: $f(x)=x^{2}$
Transformation: $y=f(x-2)$

Transforming an
Existing Function (translations)

Transformation
Description:

New Function
After Transformation:

d) Original graph: $f(x)=(x+3)^{2}$

Transformation: $y=f(x-7)$

Transformation
Description:

New Function
After Transformation:

Transformations and Operations LESSON ONE - Basic Transformations Lesson Notes

Example 11 Answer the following questions:

What Transformation Occured?
a) The graph of $y=x^{2}+3$ is vertically translated so it passes through the point $(2,10)$. Write the equation of the applied transformation. Solve graphically first, then solve algebraically.

b) The graph of $y=(x+2)^{2}$ is horizontally translated so it passes through the point $(6,9)$. Write the equation of the applied transformation. Solve graphically first, then solve algebraically.

Transformations and Operations LESSON ONE - Basic Transformations Lesson Notes

Example 12 Answer the following questions:

What Transformation Occured?
a) The graph of $y=x^{2}-2$ is vertically stretched so it passes through the point $(2,6)$. Write the equation of the applied transformation. Solve graphically first, then solve algebraically.

b) The graph of $y=(x-1)^{2}$ is transformed by the equation $y=f(b x)$. The transformed graph passes through the point $(-4,4)$. Write the equation of the applied transformation. Solve graphically first, then solve algebraically.

Transformations and Operations LESSON ONE - Basic Transformations Lesson Notes

Example 13

Sam sells bread at a farmers' market for $\$ 5.00$ per loaf. It costs $\$ 150$ to rent a table for one day at the farmers' market, and each loaf of bread costs $\$ 2.00$ to produce.

a) Write two functions, $R(n)$ and $C(n)$, to represent Sam's revenue and costs. Graph each function.

b) How many loaves of bread does Sam need to sell in order to make a profit?

Transformations and Operations LESSON ONE - Basic Transformations Lesson Notes

c) The farmers' market raises the cost of renting a table by $\$ 50$ per day. Use a transformation to find the new cost function, $\mathrm{C}_{2}(\mathrm{n})$.
d) In order to compensate for the increase in rental costs, Sam will increase the price of a loaf of bread by 20%. Use a transformation to find the new revenue function, $R_{2}(n)$.
e) Draw the transformed functions from parts (c) and (d). How many loaves of bread does Sam need to sell now in order to break even?

Transformations and Operations LESSON ONE - Basic Transformations Lesson Notes

Example 14

A basketball player throws a basketball. The path can be modeled with $h(d)=-\frac{1}{9}(d-4)^{2}+4$.

a) Suppose the player moves 2 m closer to the hoop before making the shot. Determine the equation of the transformed graph, draw the graph, and predict the outcome of the shot.
b) If the player moves so the equation of the shot is $h(d)=-\frac{1}{9}(d+1)^{2}+4$, what is the horizontal distance from the player to the hoop?

Transformations and Operations LESSON ONE - Basic Transformations Lesson Notes

This page has been left blank for correct workbook printing.

Transformations and Operations LESSON TWO - Combined Transformations

Lesson Notes

Example 1

Combined Transformations
a) Identify each parameter in the general transformation

Combining Stretches and Reflections equation: $y=a f[b(x-h)]+k$.
b) Describe the transformations in each equation:
i) $y=\frac{1}{3} f(5 x)$
ii) $y=2 f\left(\frac{1}{4} x\right)$
iii) $y=-\frac{1}{2} f\left(\frac{1}{3} x\right)$
iv) $y=-3 f(-2 x)$

Transformations and Operations LESSON TWO - Combined Transformations
 Lesson Notes
 $y=a f[b(x-h)]+k$

Example 2 Draw the transformation of each graph.
a) $y=2 f\left(\frac{1}{3} x\right)$
b) $y=\frac{1}{3} f(-x)$

Combining Stretches and Reflections
c) $y=-f(2 x)$

d) $y=-\frac{1}{2} f(-x)$

Transformations and Operations LESSON TWO - Combined Transformations
 Lesson Notes

Example 3

Answer the following questions:

Combining
Translations
a) Find the horizontal translation of $y=f(x+3)$ using three different methods. Opposite Method:

Zero Method:
Double Sign Method:
b) Describe the transformations in each equation:
i) $y=f(x-1)+3$
ii) $y=f(x+2)-4$
iii) $y=f(x-2)-3$
iv) $y=f(x+7)+5$

Transformations and Operations LESSON TWO - Combined Transformations Lesson Notes
 $y=a f[b(x-h)]+k$

Example 4 Draw the transformation of each graph.

Combining Translations
a) $y=f(x+5)-3$
b) $y=f(x-3)+7$

c) $y-12=f(x-6)$

Transformations and Operations LESSON TWO - Combined Transformations
 Lesson Notes

Example 5

Answer the following questions:
a) When applying transformations to a graph, should they be applied in a specific order?
b) Describe the transformations in each equation.
i) $y=2 f(x+3)+1$
ii) $y=-f\left(\frac{1}{3} x\right)-4$
iii) $y=\frac{1}{2} f[-(x+2)]-3$
iv) $y=-3 f[-4(x-1)]+2$

Transformations and Operations LESSON TWO - Combined Transformations
 Lesson Notes
 $y=a f[b(x-h)]+k$

Example 6 Draw the transformation of each graph.

Combining Stretches, Reflections, and Translations
a) $y=-f(x)-2$

C) $y=-\frac{1}{4} f(2 x)-1$

b) $y=f\left(-\frac{1}{4} x\right)+1$

d) $2 y-8=6 f(x-2)$

Transformations and Operations LESSON TWO - Combined Transformations Lesson Notes

Example 7 Draw the transformation of each graph.

Combining Stretches, Reflections, and Translations (watch for b-factoring!)
a) $y=f\left[\frac{1}{3}(x-1)\right]+1$

c) $y=f(3 x-6)-2$

b) $y=f(2 x+6)$

d) $y=\frac{1}{3} f(-x-4)$

Transformations and Operations LESSON TWO - Combined Transformations Lesson Notes

$$
y=a f[b(x-h)]+k
$$

Example 8

Answer the following questions:
The mapping for combined transformations is:

$$
(x, y) \rightarrow\left(\frac{x_{i}}{b}+h, a y_{i}+k\right)
$$

a) If the point $(2,0)$ exists on the graph of $y=f(x)$, find the coordinates of the new point after the transformation $y=f(-2 x+4)$.
b) If the point $(5,4)$ exists on the graph of $y=f(x)$, find the coordinates of the new point after the transformation $y=\frac{1}{2} f(5 x-10)+4$.
c) The point (m, n) exists on the graph of $y=f(x)$. If the transformation $y=2 f(2 x)+5$ is applied to the graph, the transformed point is $(4,7)$. Find the values of m and n.

Transformations and Operations LESSON TWO - Combined Transformations

Lesson Notes

Example 9

For each transformation description, write the transformation equation. Use mappings to draw the transformed graph.
a) The graph of $y=f(x)$ is vertically stretched by a factor of 3 , reflected about the x-axis, and translated 2 units to the right.

\square Mappings:
b) The graph of $y=f(x)$ is horizontally stretched by a factor of $\frac{1}{3}$, reflected about the x-axis, and translated 2 units left.

Transformation Equation:
Mappings:

Transformations and Operations LESSON TWO - Combined Transformations Lesson Notes

Example 10 Order of Transformations.

Axis-Independence
Greg applies the transformation $y=-2 f[-2(x+4)]-3$ to the graph below, using the transformation order rules learned in this lesson.

Greg's Transformation Order:
Stretches \& Reflections:
1) Vertical stretch by a scale factor of 2
2) Reflection about the x-axis
3) Horizontal stretch by a scale factor of $1 / 2$
4) Reflection about the y-axis
Translations:
5) Vertical translation 3 units down
6) Horizontal translation 4 units left

Original graph:

Transformed graph:

Next, Colin applies the same transformation, $y=-2 f[-2(x+4)]-3$, to the graph below. He tries a different transformation order, applying all the vertical transformations first, followed by all the horizontal transformations.

Colin's Transformation Order:
Vertical Transformations:
1) Vertical stretch by a scale factor of 2
2) Reflection about the x-axis
3) Vertical translation 3 units down.
\section*{Horizontal Transformations:}
4) Horizontal stretch by a scale factor of $1 / 2$
5) Reflection about the y-axis
6) Horizontal translation 4 units left

Original graph:

Transformed graph:

According to the transformation order rules we have been using in this lesson (stretches \& reflections first, translations last), Colin should obtain the wrong graph. However, Colin obtains the same graph as Greg! How is this possible?

Transformations and Operations LESSON TWO - Combined Transformations

Lesson Notes

Example 11

The goal of the video game Space Rocks is to pilot a spaceship through an asteroid field without colliding with any of the asteroids.

a) If the spaceship avoids the asteroid by navigating to the position shown, describe the transformation.

\therefore Original position of ship
Final position of ship
b) Describe a transformation that will let the spaceship pass through the asteroids.

Transformations and Operations LESSON TWO - Combined Transformations Lesson Notes

$y=\operatorname{af}[b(x-h)]+k$
c) The spaceship acquires a power-up that gives it greater speed, but at the same time doubles its width. What transformation is shown in the graph?
d) The spaceship acquires two power-ups. The first power-up halves the original width of the spaceship, making it easier to dodge asteroids. The second power-up is a left wing cannon. What transformation describes the spaceship's new size and position?

e) The transformations in parts $(a-d)$ may not be written using $y=a f[b(x-h)]+k$. Give two reasons why.

Transformations and Operations LESSON THREE - Inverses
 Lesson Notes

Example 1 Inverse Functions.

a) Given the graph of $y=2 x+4$, draw the graph of the inverse.

What is the equation of the line of symmetry?

Inverse Mapping: $(x, y) \longrightarrow(y, x)$

$$
\begin{aligned}
(-7,-10) & \longrightarrow \\
(-4,-4) & \longrightarrow \\
(-2,0) & \longrightarrow \\
(0,4) & \longrightarrow \\
(3,10) & \longrightarrow
\end{aligned}
$$

b) Find the inverse function algebraically.

Transformations and Operations LESSON THREE - Inverses
 Lesson Notes

Example 2 For each graph, answer parts (i - iv).
Domain and Range
a)

i) Draw the graph of the inverse.
ii) State the domain and range of the original graph.
iii) State the domain and range of the inverse graph.
iv) Can the inverse be represented with $\mathrm{f}^{-1}(\mathrm{x})$?

i) Draw the graph of the inverse.
ii) State the domain and range of the original graph.
iii) State the domain and range of the inverse graph.
iv) Can the inverse be represented with $f^{-1}(x)$?

Transformations and Operations LESSON THREE - Inverses
 Lesson Notes

i) Draw the graph of the inverse.
ii) State the domain and range of the original graph.
iii) State the domain and range of the inverse graph.
iv) Can the inverse be represented with $\mathrm{f}^{-1}(\mathrm{x})$?

i) Draw the graph of the inverse.
ii) State the domain and range of the original graph.
iii) State the domain and range of the inverse graph.
iv) Can the inverse be represented with $\mathrm{f}^{-1}(\mathrm{x})$?

Transformations and Operations LESSON THREE - Inverses
 Lesson Notes

For each graph, draw the inverse. How should the domain of the original graph be restricted so the inverse is a function?

Transformations and Operations LESSON THREE - Inverses
 Lesson Notes

Example 4

Find the inverse of each linear function algebraically. Draw the graph of the original function and the inverse. State the domain

Inverses of Linear Functions
a) $f(x)=x-3$
b) $f(x)=-\frac{1}{2} x-4$

Transformations and Operations LESSON THREE - Inverses
 Lesson Notes

Example 5
Find the inverse of each quadratic function algebraically. Draw the graph of the original

Inverses of
Quadratic Functions function and the inverse. Restrict the domain of $f(x)$ so the inverse is a function.
a) $f(x)=x^{2}-4$
b) $f(x)=-(x+3)^{2}+1$

Transformations and Operations LESSON THREE - Inverses
 Lesson Notes

Example 6 For each graph, find the equation of the inverse.

Finding an Inverse
From a Graph
a)

b)

Transformations and Operations LESSON THREE - Inverses
 Lesson Notes

$f^{-1}(x)$

Example 7
Answer the following questions.

Understanding Inverse Function Notation
a) If $f(x)=2 x-6$, find the inverse function and determine the value of $f^{-1}(10)$.

b) Given that $f(x)$ has an inverse function $f^{-1}(x)$, is it true that if $f(a)=b$, then $f^{-1}(b)=a$?
c) If $f^{-1}(4)=5$, determine $f(5)$.
d) If $f^{-1}(k)=18$, determine the value of k.

Transformations and Operations LESSON THREE - Inverses
 Lesson Notes

Example 8

In the Celsius temperature scale, the freezing point of water is set at 0 degrees. In the Fahrenheit temperature scale, 32 degrees is the freezing point of water. The formula to convert degrees Celsius to degrees Fahrenheit is: $F(C)=\frac{9}{5} C+32$

Celsius
Thermometer
a) Determine the temperature in degrees Fahrenheit for $28^{\circ} \mathrm{C}$.
b) Derive a function, $C(F)$, to convert degrees Fahrenheit to degrees Celsius. Does one need to understand the concept of an inverse to accomplish this?
c) Use the function $C(F)$ from part (b) to determine the temperature in degrees Celsius for $100{ }^{\circ} \mathrm{F}$.

Transformations and Operations LESSON THREE - Inverses
 Lesson Notes

d) What difficulties arise when you try to graph $F(C)$ and $C(F)$ on the same grid?

e) Derive $\mathrm{F}^{-1}(\mathrm{C})$. How does $\mathrm{F}^{-1}(\mathrm{C})$ fix the graphing problem in part (d)?
f) Graph $F(C)$ and $F^{-1}(C)$ using the graph above. What does the invariant point for these two graphs represent?
$(f+g)(x)$

$(f \cdot g)(x)$

$(f-g)(x)$ $\left(\frac{f}{g}\right)(x)$

Transformations and Operations LESSON FOUR - Function Operations Lesson Notes

Example 1

Given the functions $f(x)$ and $g(x)$, complete the table of values for each operation and draw the graph. State the domain and range of the combined function.
a) $h(x)=(f+g)(x)$ same as $f(x)+g(x)$

b) $h(x)=(f-g)(x) \quad$ same as $f(x)-g(x)$

x	$(f+g)(x)$
-8	
-4	
-2	
0	
1	
4	

Domain \& Range:

x	$(f-g)(x)$
-9	
-5	
-3	
0	
3	
6	

Domain \& Range:

Function Operations (with a table of values)

Set-Builder Notation

Transformations and Operations LESSON FOUR - Function Operations Lesson Notes

$$
\begin{array}{ll}
(f+g)(x) & (f-g)(x) \\
(f \cdot g)(x) & \left(\frac{f}{g}\right)(x)
\end{array}
$$

c) $\mathrm{h}(\mathrm{x})=(\mathrm{f} \cdot \mathrm{g})(\mathrm{x}) \quad$ same as $f(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})$

x	$(f \bullet g)(x)$
-6	
-3	
0	
3	
6	

d) $h(x)=\left(\frac{f}{g}\right)(x) \quad$ same as $f(x) \div g(x)$

Domain \& Range:

$$
\begin{array}{ll}
(f+g)(x) & (f-g)(x) \\
(f \cdot g)(x) & \left(\frac{f}{g}\right)(x) \\
\hline
\end{array}
$$

Transformations and Operations LESSON FOUR - Function Operations Lesson Notes

Example 2 Given the functions $f(x)=x-3$ and $g(x)=-x+1$, evaluate:

Function Operations (graphically and algebraically)
a) $(f+g)(-4)$ same as $f(-4)+g(-4)$

i) using the graph
ii) using $h(x)=(f+g)(x)$
b) $(f-g)(6) \quad$ same as $f(6)-g(6)$

Transformations and Operations LESSON FOUR - Function Operations Lesson Notes
 $$
\begin{array}{ll} (f+g)(x) & (f-g)(x) \\ (f \cdot g)(x) & \left(\frac{f}{g}\right)(x) \end{array}
$$

c) $(\mathrm{fg})(-1)$ same as $f(-1) \cdot g(-1)$

i) using the graph
ii) using $h(x)=(f \cdot g)(x)$
d) $\left(\frac{f}{g}\right)(5) \quad$ same as $f(5) \div g(5)$

i) using the graph ii) using $h(x)=(f \div g)(x)$

$$
(f+g)(x) \quad(f-g)(x)
$$

Transformations and Operations

$$
(f \cdot g)(x) \quad\left(\frac{f}{g}\right)(x)
$$ LESSON FOUR - Function Operations Lesson Notes

Example 3
Draw each combined function and state the domain and range.

Combining Existing Graphs

Domain $\&$ Range of $h(x)$:
c) $h(x)=(f \cdot g)(x)$

Domain \& Range of $h(x)$:
b) $h(x)=(f-g)(x)$

Domain \& Range of $h(x)$:

Domain \& Range of $h(x)$:

Transformations and Operations LESSON FOUR - Function Operations Lesson Notes

$$
\begin{array}{ll}
(f+g)(x) & (f-g)(x) \\
(f \cdot g)(x) & \left(\frac{f}{g}\right)(x)
\end{array}
$$

Example 4

 Given the functions $f(x)=2 \sqrt{x+4}+1$ and $g(x)=-1$, answer the following questions.Function Operations (with a radical function)
a) $(f+g)(x)$

iii) Domain \& Range of $h(x)$
iv) Write a transformation equation that transforms the graph of $f(x)$ to $h(x)$.
b) $(f \cdot g)(x)$

i) Use a table of values to draw (f • g)(x).

x	$(f \cdot g)(x)$
-4	
-3	
0	
5	

iii) Domain \& Range of $h(x)$
iv) Write a transformation equation that transforms the graph of $f(x)$ to $h(x)$.

$$
\begin{array}{ll}
(f+g)(x) & (f-g)(x) \\
(f \cdot g)(x) & \left(\frac{f}{g}\right)(x)
\end{array}
$$

Transformations and Operations LESSON FOUR - Function Operations Lesson Notes

Example 5

 Given the functions $f(x)=-(x-2)^{2}-4$ and $g(x)=2$, answer the following questions.Function Operations (with a quadratic function)
a) $(f-g)(x)$

i) Use a table of values to draw $(f-g)(x)$.

x	$(f-g)(x)$
0	
1	
2	
3	
4	

iii) Domain \& Range of $h(x)$
iv) Write a transformation equation that
transforms the graph of $f(x)$ to $h(x)$.
b) $\left(\frac{f}{g}\right)(x)$

iv) Write a transformation equation that
transforms the graph of $f(x)$ to $h(x)$.
i) Use a table of values to draw ($\mathrm{f} \div \mathrm{g}$) (x).

x	$(f \div g)(x)$
0	
1	
2	
3	
4	

ii) Derive $h(x)=(f \div g)(x)$
iii) Domain \& Range of $h(x)$

Transformations and Operations LESSON FOUR - Function Operations Lesson Notes

$$
\begin{array}{ll}
(f+g)(x) & (f-g)(x) \\
(f \cdot g)(x) & \left(\frac{f}{g}\right)(x)
\end{array}
$$

Example 6 Draw the graph of $h(x)=\left(\frac{f}{g}\right)(x)$. Derive $h(x)$ and state the domain and range.
a) $f(x)=1$ and $g(x)=x$

b) $f(x)=1$ and $g(x)=x-2$

x	$(f \div g)(x)$
0	
1	
2	
3	
4	

i) Use a table of values to draw $(f \div g)(x)$.

x	$(f \div g)(x)$
-2	
-1	
0	
1	
2	

iii) Domain \& Range of $h(x)$
i) Use a table of values to draw ($\mathrm{f} \div \mathrm{g}$) (x).
ii) Derive $h(x)=(f \div g)(x)$
ii) Derive $h(x)=(f \div g)(x)$
iii) Domain \& Range of $h(x)$

$$
\begin{array}{ll}
(f+g)(x) & (f-g)(x) \\
(f \cdot g)(x) & \left(\frac{f}{g}\right)(x)
\end{array}
$$

Transformations and Operations LESSON FOUR - Function Operations

Lesson Notes
c) $f(x)=x+3$ and $g(x)=x^{2}+6 x+9$

i) Use a table of values to draw $(f \div g)(x)$.

x	$(f \div g)(x)$
-5	
-4	
-3	
-2	
-1	

d) $f(x)=\sqrt{x+3}$ and $g(x)=x+2$

i) Use a table of values to draw $(f \div g)(x)$.

x	$(f \div g)(x)$
-4	
-3	
-2	
1	
6	

iii) Domain \& Range of $h(x)$
ii) Derive $h(x)=(f \div g)(x)$
ii) Derive $h(x)=(f \div g)(x)$
iii) Domain \& Range of $h(x)$

Transformations and Operations LESSON FOUR - Function Operations Lesson Notes

$$
\begin{array}{ll}
(f+g)(x) & (f-g)(x) \\
(f \cdot g)(x) & \left(\frac{f}{g}\right)(x)
\end{array}
$$

Example 7

Two rectangular lots are adjacent to each other, as shown in the diagram.
a) Write a function, $A_{L}(x)$, for the area of the large lot.

b) Write a function, $\mathrm{A}_{\mathrm{s}}(\mathrm{x})$, for the area of the small lot.
c) If the large rectangular lot is $10 \mathrm{~m}^{2}$ larger than the small lot, use a function operation to solve for x .
d) Using a function operation, determine the total area of both lots.
e) Using a function operation, determine how many times bigger the large lot is than the small lot.

$$
\begin{array}{rr}
(f+g)(x) & (f-g)(x) \\
(f \cdot g)(x) & \left(\frac{f}{g}\right)(x)
\end{array} \quad \begin{array}{r}
\text { Transformations and Operations } \\
\text { LESSON FOUR - Function Operations } \\
\text { Lesson Notes }
\end{array}
$$

Example 8

Greg wants to to rent a stand at a flea market to sell old video game cartridges. He plans to acquire games for $\$ 4$ each from an online auction site, then sell them for $\$ 12$ each. The cost of renting the stand is $\$ 160$ for the day.
a) Using function operations, derive functions for revenue $R(n)$, expenses $E(n)$, and profit $P(n)$. Graph each function.

b) What is Greg's profit if he sells 52 games?

c) How many games must Greg sell to break even?

Transformations and Operations LESSON FOUR - Function Operations Lesson Notes

$$
\begin{array}{ll}
(f+g)(x) & (f-g)(x) \\
(f \cdot g)(x) & \left(\frac{f}{g}\right)(x)
\end{array}
$$

Example 9

The surface area and volume of a right cone are:

$$
\begin{aligned}
& S A=\pi r^{2}+\pi r s \\
& V=\frac{1}{3} \pi r^{2} h
\end{aligned}
$$

where r is the radius of the circular base, h is the height of the apex, and s is the slant height of the side of the cone.

A particular cone has a height that is $\sqrt{3}$ times larger than the radius.
a) Can we write the surface area and volume formulae as single-variable functions?
b) Express the apex height in terms of r.
c) Express the slant height in terms of r.
d) Rewrite both the surface area and volume formulae so they are single-variable functions of r.
e) Use a function operation to determine the surface area to volume ratio of the cone.
f) If the radius of the base of the cone is 6 m , find the exact value of the surface area to volume ratio.

Transformations and Operations LESSON FIVE - Function Composition Lesson Notes

Example 1
 Given the functions $f(x)=x-3$ and $g(x)=x^{2}$:

a) Complete the table of values
for $(f \circ g)(x)$. same as $f(g(x))$

x	$g(x)$	$f(g(x))$
-3		
-2		
-1		
0		
1		
2		
3		

e) Derive $n(x)=(g \circ f)(x)$.
b) Complete the table of values
for $(g \circ f)(x)$. same as $g(f(x))$

x	$f(x)$	$g(f(x))$
0		
1		
2		
3		

c) Does order matter when performing a composition?
f) Draw $\mathrm{m}(\mathrm{x})$ and $\mathrm{n}(\mathrm{x})$. The graphs of $f(\mathrm{x})$ and $g(x)$ are provided.

Transformations and Operations LESSON FIVE - Function Composition Lesson Notes

$$
f \circ g=f(g(x))
$$

Example 2
Given the functions $f(x)=x^{2}-3$ and $g(x)=2 x$, evaluate each of the following:

Function Composition
(numeric solution)
a) $m(3)=(f \circ g)(3)$
b) $n(1)=(g \circ f)(1)$
c) $p(2)=(f \circ f)(2)$
d) $\mathrm{q}(-4)=(\mathrm{g} \circ \mathrm{g})(-4)$

$$
f \circ g=f(g(x))
$$

Transformations and Operations LESSON FIVE - Function Composition
 Lesson Notes

Example 3
Given the functions $f(x)=x^{2}-3$ and $g(x)=2 x$ (these are the same functions found in

Function Composition
(algebraic solution) Example 2), find each composite function.
a) $m(x)=(f \circ g)(x)$
b) $n(x)=(g \circ f)(x)$
c) $p(x)=(f \circ f)(x)$
d) $q(x)=(g \circ g)(x)$
e) Using the composite functions derived in parts $(a-d)$, evaluate $m(3), n(1), p(2)$, and $q(-4)$. Do the results match the answers in Example 2?

Transformations and Operations LESSON FIVE - Function Composition Lesson Notes

$$
f \circ g=f(g(x))
$$

Example 4
Given the functions $f(x)$ and $g(x)$, find each composite function. Make note of any transformations as you complete your work.

$$
f(x)=(x+1)^{2} \quad g(x)=3 x
$$

a) $m(x)=(f \circ g)(x)$

Transfomation:

b) $n(x)=(g \circ f)(x)$

Transfomation:

$$
f \circ g=f(g(x))
$$

Transformations and Operations LESSON FIVE - Function Composition
 Lesson Notes

Example 5
Given the functions $f(x)$ and $g(x)$, find the composite function $m(x)=(f \circ g)(x)$ and

Domain of Composite Functions
a) $\begin{aligned} & f(x)=\sqrt{x-3} \\ & g(x)=x-5\end{aligned}$ state the domain.
b) $\begin{aligned} & f(x)=\sqrt{x-3} \\ & g(x)=x+1\end{aligned}$

Transformations and Operations LESSON FIVE - Function Composition Lesson Notes

$$
f \circ g=f(g(x))
$$

Example 6 Given the functions $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x}), \mathrm{m}(\mathrm{x})$, and $\mathrm{n}(\mathrm{x})$, find each composite function and state

Function Composition (three functions) the domain.

$$
f(x)=\sqrt{x} \quad g(x)=\frac{1}{x} \quad m(x)=|x| \quad n(x)=x+2
$$

a) $h(x)=[g \circ m \circ n](x)$
b) $h(x)=[n \circ f \circ n](x)$

$$
f \circ g=f(g(x))
$$

Transformations and Operations LESSON FIVE - Function Composition Lesson Notes

Example 7
Given the functions $f(x), g(x), m(x)$, and $n(x)$, find each composite function and state

Function Composition (with additional operations) the domain.

$$
f(x)=\sqrt{x} \quad g(x)=\frac{1}{x} \quad m(x)=|x| \quad n(x)=x+2
$$

a) $h(x)=[(g g) \circ n](x)$
b) $h(x)=[f \circ(n+n)](x)$

Transformations and Operations LESSON FIVE - Function Composition Lesson Notes

Example 8
Given the composite function $h(x)=(f \circ g)(x)$, find the component functions, $f(x)$ and $g(x)$. Composite Function (More than one answer is possible)
a) $h(x)=2 x+2$
b) $h(x)=\frac{1}{x^{2}-1}$
c) $h(x)=(x+1)^{2}-5(x+1)+1$
d) $h(x)=x^{2}+4 x+4$
e) $h(x)=2 \sqrt{\frac{1}{x}}$
f) $h(x)=|x|$

$$
f \circ g=f(g(x))
$$

Transformations and Operations LESSON FIVE - Function Composition Lesson Notes

Example 9

Two functions are inverses if $\left(f^{-1} \circ f\right)(x)=x$. Determine if each pair of functions are

Composite Functions and Inverses
a) $f(x)=3 x-2$ and $f^{-1}(x)=\frac{1}{3} x+\frac{2}{3}$
b) $f(x)=x-1$ and $f^{-1}(x)=1-x$

Transformations and Operations LESSON FIVE - Function Composition Lesson Notes

$f \circ g=f(g(x))$

Example 10

The price of 1 L of gasoline is $\$ 1.05$. On a level road, Darlene's car uses 0.08 L of fuel for every kilometre driven.
a) If Darlene drives 50 km , how much did the gas cost to fuel the trip? How many steps does it take to solve this problem (without composition)?

b) Write a function, $\mathrm{V}(\mathrm{d})$, for the volume of gas consumed as a function of the distance driven.
c) Write a function, $M(V)$, for the cost of the trip as a function of gas volume.
d) Using function composition, combine the functions from parts $b \& c$ into a single function, $M(d)$, where M is the money required for the trip. Draw the graph.

e) Solve the problem from part (a) again, but this time use the function derived in part (d). How many steps does the calculation take now?

$$
f \circ g=f(g(x))
$$

Transformations and Operations LESSON FIVE - Function Composition
 Lesson Notes

Example 11

A pebble dropped in a lake creates a circular wave that
 travels outward at a speed of $30 \mathrm{~cm} / \mathrm{s}$.
a) Use function composition to derive a function, $A(t)$, that expresses the area of the circular wave as a function of time.
b) What is the area of the circular wave after 3 seconds?
c) How long does it take for the area enclosed by the circular wave to be $44100 \mathrm{~m} \mathrm{~cm}^{2}$? What is the radius of the wave?

Transformations and Operations LESSON FIVE - Function Composition Lesson Notes

$f \circ g=f(g(x))$

Example 12

The exchange rates of several currencies on a particular day are listed below:

$$
\begin{aligned}
& \text { American Dollars }=1.03 \times \text { Canadian Dollars } \\
& \text { Euros }=0.77 \times \text { American Dollars } \\
& \text { Japanese Yen }=101.36 \times \text { Euros } \\
& \text { British Pounds }=0.0083 \times \text { Japanese Yen }
\end{aligned}
$$

a) Write a function, a(c), that converts Canadian dollars to American dollars.
b) Write a function, $\mathrm{j}(\mathrm{a})$, that converts American Dollars to Japanese Yen.
c) Write a function, b(a), that converts American Dollars to British Pounds.
d) Write a function, b(c), that converts Canadian Dollars to British Pounds.

$f \circ g=f(g(x))$

Transformations and Operations LESSON FIVE - Function Composition Lesson Notes

Example 13

A drinking cup from a water fountain has the shape of an inverted cone. The cup has a height of 8 cm , and a radius of 3 cm . The water in the cup also has the shape of an inverted cone, with a radius of r and a height of h.

The diagram of the drinking cup shows two right triangles: a large triangle for the entire height of the cup, and a smaller triangle for the water in the cup. The two triangles have
 identical angles, so they can be classified as similar triangles.

Reminder: In similar triangles, the ratios of corresponding sides are equal.

$$
\frac{d}{b}=\frac{c}{a}
$$

a) Use similar triangle ratios to express r as a function of h.
b) Derive the composite function, $\mathrm{V}_{\text {water }}(\mathrm{h})=\left(\mathrm{V}_{\text {cone }} \circ \mathrm{r}\right)(\mathrm{h})$, for the volume of the water in the cone.
c) If the volume of water in the cone is $3 \pi \mathrm{~cm}^{3}$, determine the height of the water.

Transformations and Operations LESSON FIVE - Function Composition Lesson Notes

This page has been left blank for correct workbook printing.

Answer Key

\sum
Transformations and Operations Lesson One: Basic Transformations

Example 1: a)

c)

Example 2: a)

b)

c)

d)

On this page,
= invariant point
d)

Example 3: a)

b)

c)

b)

c)

Example 5: a)

b)

c)

d)

Example 6: a)

b)

c)

d)

Example 7: a)

$$
\begin{aligned}
& y=f(2 x) \\
& (x, y) \rightarrow\left(\frac{1}{2} x, y\right)
\end{aligned}
$$

$y=f(x+6)$
$(x, y) \rightarrow(x-6, y)$
b) $y=f(3 x)$

Example 9: a)

$$
y=2 x^{2}-2
$$

Example 10: a)

$$
y=x^{2}+2
$$

b)

b)

c)

$$
\begin{aligned}
& y=f(x)-4 \\
& (x, y) \rightarrow(x, y-4)
\end{aligned}
$$

c) $y=f\left(\frac{1}{2} x\right)$

$y=-x^{2}+2$
$y=(-x-6)^{2}$

$$
y=(x-2)^{2}
$$

d)

$$
\begin{aligned}
& y=-f(x) \\
& (x, y) \rightarrow(x,-y)
\end{aligned}
$$

d) $y=-f(x)$
d)
d)

$$
y=(x-4)^{2}
$$

Example 11:

a)

$y=f(x)+3$
b)

$$
y=f(x-5) \text { or } y=f(x-11)
$$

Example 13:
a) $R(n)=5 n$
$C(n)=2 n+150$
b) 50 loaves
c) $\mathrm{C}_{2}(\mathrm{n})=2 \mathrm{n}+200$
d) $R_{2}(n)=6 n$
e) 50 loaves

Example 14:
a) $h(d-2)=-\frac{1}{9}(d-6)^{2}+4$
b) 12 metres

$$
2
$$

$$
\begin{array}{|l|l|l|l}
\hline 20 & & & \\
\hline 40 & \\
\hline
\end{array}
$$

b)

$$
y=3 f(x)
$$

$$
y=f\left(\frac{1}{4} x\right) \text { or } y=f\left(-\frac{3}{4} x\right)
$$

Answer Key

Transformations and Operations Lesson Two: Combined Transformations

Example 1: a) a is the vertical stretch factor.
b is the reciprocal of the horizontal stretch factor.
h is the horizontal displacement. k is the vertical displacement.
b) i. V.S. $1 / 3$
H.S. 1/5
ii. V.S. 2
H.S. 4
iii. V.S. $1 / 2$
H.S. 3

Reflection about x -axis
iv. V.S. 3
H.S. 1/2

Reflection about x-axis Reflection about y-axis

Example 2: a)

b)

c)

d)

Example 3: a) H.T. 3 left b) i. H.T. 1 right
ii. H.T. 2 left
iii. H.T. 2 right
iv. H.T. 7 left V.T. 3 up V.T. 4 down
V.T. 3 down
V.T. 5 up

Example 4: a)

b)

c)

d)

Example 5: a) Stretches and reflections should be applied first, in any order. Translations should be applied last, in any order.
b) i. V.S. 2
H.T. 3 left
V.T. 1 up
iii. V.S. 1/2
ii. H.S. 3

Reflection about x-axis V.T. 4 down
iv. V.S. 3; H.S. 1/4

Reflection about x-axis Reflection about y-axis H.T. 1 right; V.T. 2 up

Example 6: a)

b)

c)

d)

Example 7: a)

b)

c)

d)

Example 8: Example 9:
a) $(1,0)$
b) $(3,6)$
a) $y=-3 f(x-2)$
c) $\mathrm{m}=8$ and $n=1$
b) $y=-f[3(x+2)]$

Example 10:
Axis-Independence
Apply all the vertical transformations together and apply all the horizontal transformations together, in either order.

Example 11:
a) H.T. 8 right; V.T. 7 up
b) Reflection about x-axis; H.T. 4 left; V.T. 6 down
c) H.S. 2; H.T. 3 left; V.T. 7 up
d) H.S. 1/2; Reflection about x \& y-axis;
H.T. 5 right; V.T. 7 down.
e) The spaceship is not a function, and it must be translated in a specific order to avoid the asteroids.

Example 1: a) Line of Symmetry: $y=x$

Example 2:
a)

b)

c)

d)

Example 3:
a)

Restrict the domain of the original function to $-10 \leq x \leq-5$ or $-5 \leq x \leq 0$
b)

Restrict the domain of the original function to $x \leq 5$ or $x \geq 5$.

Example 4:

b)

$\begin{array}{ll}\text { Original: } & \text { Inverse: } \\ \text { D: } x \in R & D: x \varepsilon R \\ R: y \in R & R: y \varepsilon R\end{array}$
$R: y \varepsilon R \quad R: y \varepsilon R$
Original: Inverse:
D: $x \in R \quad D: x \in R$
R: $y \varepsilon R$

The inverse is a function. The inverse is a function.

Example 6:

a)

b)

$f^{-1}(x)=-\frac{1}{2} x-\frac{9}{2}$
D: $x \in R$
$f^{-1}(x)=-(x-4)^{2}-3$

Restrict the domain of the original function to $x \leq-3$ or $x \geq-3$.
 the original function to $x \leq 0$ or $x \geq 0$

Example 7: Example 8:

a) $(10,8)$
a) $28{ }^{\circ} \mathrm{C}$ is equivalent to $82.4{ }^{\circ} \mathrm{F}$
b) True.
b) $C(F)=\frac{5}{9} F-\frac{160}{9}$
$\mathrm{f}^{-1}(\mathrm{~b})=\mathrm{a}$
c) $100^{\circ} \mathrm{F}$ is equivalent to $37.8^{\circ} \mathrm{C}$
c) $f(5)=4$
d) $k=30$
d) $C(F)$ can't be graphed since its dependent variable is C, but the dependent variable on the graph's y-axis is F. This is a mismatch.
e) $F^{-1}(C)=\frac{5}{9} C-\frac{160}{9}$

f) The invariant point occurs when the temperature in degrees Fahrenheit is equal to the temperature in degrees Celsius. $-40^{\circ} \mathrm{F}$ is equal to $-40^{\circ} \mathrm{C}$.

Answer Key

Transformations and Operations Lesson Four: Function Operations
Example 1: a)

\boldsymbol{x}	$(\boldsymbol{f}+\boldsymbol{g})(\mathbf{x})$
-8	-6
-4	-6
-2	0
0	-6
1	-9
4	-9

c)

\boldsymbol{x}	$(\boldsymbol{f} \cdot \boldsymbol{g})(\boldsymbol{x})$
-6	-4
-3	-8
0	-2
3	-3
6	DNE

Domain:
$-8 \leq x \leq 4$
or [-8, 4]
Range:
$-9 \leq y \leq 0$
or $[-9,0]$

Domain:
$-6 \leq x \leq 3$
or $[-6,3]$
Range:
$-8 \leq y \leq-2$
or [-8, -2]

Example 2:
a) i. $(f+g)(-4)=-2$ ii. $h(x)=-2 ; h(-4)=-2$
b) i. $(f-g)(6)=8$ ii. $h(x)=2 x-4 ; h(6)=8$
c) i. $(\mathrm{fg})(-1)=-8 \quad$ ii. $h(x)=-x^{2}+4 x-3 ; h(-1)=-8$
d) i. $(f / g)(5)=-0.5$ ii. $h(x)=(x-3) /(-x+1) ; h(5)=-0.5$
b)

Domain:
$-5 \leq x \leq 3$; or [-5, 3]

Range:
$2 \leq y \leq 10$
or [2, 10]
d)

\boldsymbol{x}	$(\boldsymbol{f} \div \mathbf{g})(\boldsymbol{x})$
-6	DNE
-4	-4
-2	-8
0	-6
2	-4
4	-2
6	DNE

Domain:
$-4 \leq x \leq 4$ or [-4, 4]

Range:
$-8 \leq y \leq-2$
or [-8, -2]

Reminder: Math 30-1 students are

Example 3:

Domain: $x \geq-4$ or $[-4, \infty)$ Range: $y \leq 9$ or $(-\infty, 9]$

Domain: $3<x \leq 5$ or (3, 5] Range: $0<y \leq 1$ or $(0,1]$

Example 4:

Domain: $x \geq-4$ or $[-4, \infty)$
Range: $\mathrm{y} \geq 0$ or [$0, \infty$)
Transformation: $y=f(x)-1$

$$
h(x)=-2 \sqrt{x+4}-1
$$

b)

Domain: $x \geq-4$ or $[-4, \infty)$
Range: $y \leq-1$ or $(-\infty,-1]$
Transformation: $\mathrm{y}=-\mathrm{f}(\mathrm{x})$.
c)

Domain: $0<x \leq 10$ or (0, 10] Domain: $x>-2$ or $(-2, \infty)$ Range: $-10 \leq y \leq 0$ or [-10, 0] Range: $y>0$ or $(0, \infty)$ expected to know that domain and range can be expressed using interval notation.

Example 5:

Domain: $x \in R$ or $(-\infty, \infty)$ Range: $\mathrm{y} \leq-6$ or $(-\infty,-6]$
Transformation: $y=f(x)-2$

Domain: $x \in R$ or $(-\infty, \infty)$
Range: $y \leq-2$ or $(-\infty,-2]$
Transformation: $y=1 / 2 f(x)$

Example 6:

$$
h(x)=\frac{1}{x}
$$

a)

Domain: $x \varepsilon R, x \neq 0$;
Range: $y \in R, y \neq 0$
or D: $(-\infty, 0) \cup(0, \infty) ; R:(-\infty, 0) \cup(0, \infty)$

Example 7:

a) $A_{L}(x)=8 x^{2}-8 x$
b) $A_{5}(x)=3 x^{2}-3 x$
c) $A_{L}(x)-A_{S}(x)=10 ; x=2$
d) $A_{L}(2)+A_{S}(2)=22 ;$
e) The large lot is 2.67 times larger than the small lot

Domain: $x \in R, x \neq 2$;
Range: $y \in R, y \neq 0$
or $\mathrm{D}:(-\infty, 2) \cup(2, \infty)$ R: $(-\infty, 0) \cup(0, \infty)$
$h(x)=\frac{1}{x+3}$

Domain: $x \in R, x \neq-3$;
Range: $y \in R, y \neq 0$
or $\mathrm{D}:(-\infty,-3) \cup(-3, \infty)$; $:(-\infty, 0) \cup(0, \infty)$

Domain: $x \geq-3, x \neq-2$;
Range: $y \in R, y \neq 0$
or D: $[-3,-2) \cup(-2, \infty)$; R: $(-\infty, 0) \cup(0, \infty)$

Example 8:
a) $R(n)=12 n$; $E(n)=4 n+160 ;$ $P(n)=8 n-160$
b) When 52 games are sold, the profit is $\$ 256$
c) Greg will break even when he sells 20 games

Example 9:

a) The surface area and volume formulae have two variables, so they may not be written as single-variable functions.
b) $h=\sqrt{3} r$
c) $s=2 r$
d) $S A(r)=3 \pi r^{2}$
$V(r)=\frac{\sqrt{3}}{3} \pi r^{3}$
e) $\frac{S A}{V}(r)=\frac{3 \sqrt{3}}{r}$
f) $\frac{S A}{V}(6)=\frac{\sqrt{3}}{2}$

Transformations and Operations Lesson Five: Function Composition

Example 1: a)

\boldsymbol{x}	$\boldsymbol{g}(x)$	$f(\boldsymbol{g}(x))$
-3	9	6
-2	4	1
-1	1	-2
0	0	-3
1	1	-2
2	4	1
3	9	6

b)

b) $n(1)=-4$
c) $p(2)=-2$
d) $q(-4)=-16$

Example 2: a) $m(3)=33$
Example 3: a) $m(x)=4 x^{2}-3$
b) $n(x)=2 x^{2}-6$
c) $p(x)=x^{4}-6 x^{2}+6$
d) $q(x)=4 x$

Example 4: a) $m(x)=(3 x+1)^{2}$
The graph of $f(x)$ is horizontally stretched by a scale factor of $1 / 3$.

b) $n(x)=3(x+1)^{2}$

The graph of $f(x)$ is vertically stretched by a scale factor of 3 .

c) Order matters in a composition of functions.
d) $m(x)=x^{2}-3$
e) $n(x)=(x-3)^{2}$
e) All of the results match

Answer Key

Example 5: a) $m(x)=\sqrt{x-8} \quad$ Domain: $x \geq 8 \quad$ b) $m(x)=\sqrt{x-2} \quad$ Domain: $x \geq 2$

Example 6: a) $h(x)=\frac{1}{|x+2|} \quad$ Domain: $x \in R, x \neq-2 \quad$ b) $h(x)=\sqrt{x+2}+2 \quad$ Domain: $x \geq-2$
Example 7: a) $h(x)=\frac{1}{(x+2)^{2}}$ Domain: $x \in R, x \neq-2 \quad$ b) $h(x)=\sqrt{2 x+4} \quad$ Domain: $x \geq-2$
Example 8: a) $f(x)=2 x ; g(x)=x+1 \quad$ b) $f(x)=\frac{1}{x} ; g(x)=x^{2}-1 \quad$ c) $f(x)=x^{2}-5 x+1 ; g(x)=x+1$
d) $f(x)=x^{2} ; g(x)=x+2$
e) $f(x)=2 \sqrt{x} ; g(x)=\frac{1}{x}$
f) $f(x)=\sqrt{x} ; g(x)=x^{2}$

Example 9:

a) $\left(f^{-1} \circ f\right)(x)=x$, so the functions are inverses of each other.
b) $\left(f^{-1} \circ f\right)(x) \neq x$, so the functions are NOT inverses of each other.

Example 10:

a) The cost of the trip is $\$ 4.20$. It took two separate calculations to find the answer.
b) $V(d)=0.08 \mathrm{~d}$
c) $M(\mathrm{~V})=1.05 \mathrm{~V}$
d) $M(d)=0.084 d$
e) Using function composition, we were able to solve the problem with one calculation instead of two.

Example 12:

a) $a(c)=1.03 c$
b) $j(a)=78.0472 a$
c) $b(a)=0.6478 a$
d) $b(c)=0.6672 c$

Example 13:

a) $r(h)=\frac{3 h}{8}$
b) $V_{\text {water }}(h)=\frac{3}{64} \pi h^{3}$
c) $\mathrm{h}=4 \mathrm{~cm}$

