
$\sin \theta=\frac{1}{2}$

$\cos ^{3} x+\cos x \sin ^{2} x=\cos x$

$$
\cos x\left(\cos ^{2} x+\sin ^{2} x\right)
$$

$$
\cos x(1)
$$

$$
\cos x \mid \cos x \quad \sqrt{ }
$$

Lesson 1: Trigonometric Equations Approximate Completion Time: 4 Days

$$
\begin{aligned}
& \cos 15^{\circ}=\frac{\sqrt{6}+\sqrt{2}}{4} \\
& \sin 15^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4}
\end{aligned}
$$

Lesson 3: Trigonometric Identities II Approximate Completion Time: 4 Days

Complete this workbook by watching the videos on www.math30.ca. Work neatly and use proper mathematical form in your notes.

Example 1

Find all angles in the domain $0 \leq \theta \leq 2 \pi$ that satisfy the given equation.
Write the general solution.
b) $\cos \theta=-\frac{1}{2}$
a) $\sin \theta=\frac{\sqrt{3}}{2}$

c) $\tan \theta=0$

d) $\tan ^{2} \theta=1$

Primary Ratios
Solving equations with the unit circle.

Trigonometry
 LESSON FIVE - Trigonometric Equations Lesson Notes

$$
\sin \theta=\frac{1}{2} \stackrel{\square}{\square}
$$

Example 2

Find all angles in the domain $0 \leq \theta \leq 2 \pi$ that satisfy the given equation. Write the general solution.

b) $\sin \theta=-1$

Primary Ratios

Solving equations graphically with intersection points

c) $\cos \theta=-\frac{\sqrt{2}}{2}$
$\left.\begin{array}{l}1 \\ \hline\end{array}\right]$
e) $\tan \theta=-\sqrt{3}$

d) $\cos \theta=2$

f) $\tan \theta=$ undefined

Trigonometry
 LESSON FIVE - Trigonometric Equations Lesson Notes

Example 3

Find all angles in the domain $0^{\circ} \leq \theta \leq 360^{\circ}$ that satisfy the given equation.
Write the general solution.

Primary Ratios
Solving equations with a
calculator. (degree mode)

a) $\sin \theta=\frac{1}{2}$

b) $\cos \theta=-\frac{\sqrt{3}}{2}$

c) $\tan \theta=1$

Trigonometry LESSON FIVE - Trigonometric Equations Lesson Notes

Example 4

Find all angles in the domain $0 \leq \theta \leq 2 \pi$ that satisfy the given equation.
a) $\sin \theta=1$

b) $\cos \theta=\frac{1}{2}$

Trigonometry
 LESSON FIVE - Trigonometric Equations Lesson Notes

Example 5 Solve $\cos \theta=-\frac{1}{2} \quad 0 \leq \theta \leq 2 \pi$

a) non-graphically, using the $\cos ^{-1}$ feature of a calculator.
b) non-graphically, using the unit circle.

Primary Ratios
Equations with primary trig ratios

c) graphically, using the
d) graphically, using point(s) of intersection.
θ-intercepts.

Trigonometry LESSON FIVE - Trigonometric Equations Lesson Notes

Example 6
 Solve $\sin \theta=-0.30 \quad \theta \varepsilon R$

a) non-graphically, using the
b) non-graphically, using

Primary Ratios
Equations with primary trig ratios $\sin ^{-1}$ feature of a calculator. the unit circle.

c) graphically, using the
d) graphically, using point(s) of intersection. θ-intercepts.

Trigonometry
 LESSON FIVE - Trigonometric Equations
 Lesson Notes

Example 7

Find all angles in the domain $0 \leq \theta \leq 2 \pi$ that satisfy the given equation.
Write the general solution.
Reciprocal Ratios Solving equations with the unit circle.
a) $\sec \theta=-2$
b) $\csc \theta=$ undefined
c) $\cot \theta=-1$

Trigonometry LESSON FIVE - Trigonometric Equations Lesson Notes

$$
\sin \theta=\frac{1}{2}
$$

Example 8

Find all angles in the domain $0 \leq \theta \leq 2 \pi$ that satisfy the given equation.
Write the general solution.

c) $\sec \theta=2$

e) $\cot \theta=\frac{\sqrt{3}}{3}$

b) $\csc \theta=$ undefined

Reciprocal Ratios
Solving equations graphically with intersection points

d) $\sec \theta=-1$

f) $\cot \theta=0$

Trigonometry
 LESSON FIVE - Trigonometric Equations
 Lesson Notes

Example 9
Find all angles in the domain $0^{\circ} \leq \theta \leq 360^{\circ}$ that satisfy the given equation.
Write the general solution

Reciprocal Ratios
Solving equations with a calculator. (degree mode)
a) $\sec \theta=-2$

b) $\csc \theta=\frac{2 \sqrt{3}}{3}$
c) $\cot \theta=\frac{\sqrt{3}}{3}$

270°

Trigonometry LESSON FIVE - Trigonometric Equations Lesson Notes

Example 10
Find all angles in the domain $0 \leq \theta \leq 2 \pi$ that satisfy the given equation.
Write the general solution.
a) $\csc \theta=-\frac{1}{2}$

b) $\sec \theta=1$

Trigonometry
 LESSON FIVE - Trigonometric Equations Lesson Notes

Example 11

Solve $\csc \theta=-2 \quad 0 \leq \theta \leq 2 \pi$
a) non-graphically, using the $\sin ^{-1}$ feature of a calculator.
b) non-graphically, using the unit circle.

Reciprocal Ratios
Equations with reciprocal trig ratios

c) graphically, using the point(s) of intersection.
d) graphically, using θ-intercepts.

Trigonometry LESSON FIVE - Trigonometric Equations Lesson Notes

Example 12 Solve $\sec \theta=-2.36620^{\circ} \leq \theta \leq 360^{\circ}$
a) non-graphically, using the $\cos ^{-1}$ feature of a calculator.
b) non-graphically, using

Reciprocal Ratios
Equations with reciprocal trig ratios
 the unit circle.

c) graphically, using the
d) graphically, using θ-intercepts.

Example 13

Find all angles in the domain $0 \leq \theta \leq 2 \pi$ that satisfy the given equation. Write the general solution.
a) $\cos \theta-1=0$
b) $2 \sin \theta-\sqrt{3}=0$

First-Degree Trigonometric Equations
c) $3 \tan \theta-5=0$
d) $4 \sec \theta+3=3 \sec \theta+1$

Trigonometry LESSON FIVE - Trigonometric Equations Lesson Notes

Example 14

a) $2 \sin \theta \cos \theta=\cos \theta$

Find all angles in the domain $0 \leq \theta \leq 2 \pi$ that satisfy the given equation.
b) $7 \sin \theta=4 \sin \theta$

First-Degree Trigonometric Equations

Check the solution graphically.

d) $\tan \theta+\cos \theta \tan \theta=0$
c) $\sin \theta \tan \theta=\sin \theta$

Check the solution graphically.

Check the solution graphically.

Trigonometry
 LESSON FIVE - Trigonometric Equations Lesson Notes

Example 15

Find all angles in the domain $0 \leq \theta \leq 2 \pi$
that satisfy the given equation.
a) $\sin ^{2} \theta=1$
b) $4 \cos ^{2} \theta-3=0$

Second-Degree Trigonometric Equations

Check the solution graphically.

d) $\tan ^{4} \theta-\tan ^{2} \theta=0$

Check the solution graphically.

Trigonometry LESSON FIVE - Trigonometric Equations Lesson Notes

Example 16

Find all angles in the domain $0 \leq \theta \leq 2 \pi$ that satisfy the given equation.
a) $2 \sin ^{2} \theta-\sin \theta-1=0$

Second-Degree Trigonometric Equations

Check the solution graphically.

b) $\csc ^{2} \theta-3 \csc \theta+2=0$

Check the solution graphically.

c) $2 \sin ^{3} \theta-5 \sin ^{2} \theta+2 \sin \theta=0$

Trigonometry
 LESSON FIVE - Trigonometric Equations
 Lesson Notes

Example 17 Solve each trigonometric equation.

Double and Triple Angles
a) $\sin 2 \theta=-\frac{\sqrt{3}}{2} \quad 0 \leq \theta \leq 2 \pi$
i) graphically:
ii) non-graphically:

b) $\cos 3 \theta=\frac{\sqrt{2}}{2} \quad 0 \leq \theta \leq 2 \pi$
i) graphically:
ii) non-graphically:

Trigonometry
 LESSON FIVE - Trigonometric Equations Lesson Notes

$$
\sin \theta=\frac{1}{2}
$$

Example 18 Solve each trigonometric equation.

Half and
Quarter Angles

a) $\cos \frac{1}{2} \theta=\frac{1}{2} \quad 0 \leq \theta \leq 4 \pi$
i) graphically:
ii) non-graphically:

b) $\sin \frac{1}{4} \theta=-1 \quad 0 \leq \theta \leq 8 \pi$
i) graphically:
ii) non-graphically:

LESSON FIVE - Trigonometric Equations Lesson Notes

Example 19 It takes the moon approximately 28 days to go through all of its phases.

a) Write a function, $\mathrm{P}(\mathrm{t})$, that expresses the visible percentage of the moon as a function of time. Draw the graph.

b) In one cycle, for how many days is 60% or more of the moon's surface visible?

Trigonometry LESSON FIVE - Trigonometric Equations Lesson Notes

Example 20 Rotating Sprinkler

A rotating sprinkler is positioned 4 m away from the wall of a house. The wall is 8 m long. As the sprinkler rotates, the stream of water splashes the house d meters from point P. Note: North of point P is a positive distance, and south of point P is a negative distance.
a) Write a tangent function, $d(\theta)$, that expresses the distance where the water splashes the wall as a function of the rotation angle θ.

b) Graph the function for one complete rotation of the sprinkler. Draw only the portion of the graph that actually corresponds to the wall being splashed.

c) If the water splashes the wall 2.0 m north of point P , what is the angle of rotation (in degrees)?

$$
\sin \theta=\frac{1}{2} \stackrel{\square}{\square}
$$

Example 21 Inverse Trigonometric Functions

When we solve a trigonometric equation like $\cos x=-1$, one possible way to write the solution is:

Inverse Trigonometric Functions
Enrichment Example
Students who plan on taking university calculus should complete this example.

$$
\begin{aligned}
& \cos x=-1 \\
& \cos ^{-1}(\cos x)=\cos ^{-1}(-1) \\
& x=\pi
\end{aligned}
$$

In this example, we will explore the inverse functions of sine and cosine to learn why taking an inverse actually yields the solution.
a) When we draw the inverse of trigonometric graphs, it is helpful to use a grid that is labeled with both radians and integers. Briefly explain how this is helpful.

Trigonometry
 LESSON FIVE - Trigonometric Equations Lesson Notes

$$
\sin \theta=\frac{1}{2}
$$

b) Draw the inverse function of each graph. State the domain and range of the original and inverse graphs (after restricting the domain of the original so the inverse is a function).

c) Is there more than one way to restrict the domain of the original graph so the inverse is a function? If there is, generalize the rule in a sentence.
d) Using the inverse graphs from part (b), evaluate each of the following:
i) $\sin ^{-1}(1)=$
ii) $\arccos (-1)=$

Example 1

Understanding Trigonometric Identities.

Trigonometric Identities
a) Why are trigonometric identities considered to be a special type of trigonometric equation?

A trigonometric

 equation that IS an identity:$$
\sec x=\frac{1}{\cos x}
$$

A trigonometric equation that is NOT an identity:

b) Which of the following trigonometric equations are also trigonometric identities?
i) $\sin x=-\frac{1}{2}$
ii) $\tan x=1$
iii) $\tan x=\frac{\sin x}{\cos x}$

iv) $\csc x=\frac{1}{\sin x}$

v) $\sec x=$ undefined

Trigonometry
 LESSON SIX- Trigonometric Identities I Lesson Notes

$$
\begin{array}{r}
\cos ^{3} x+\cos x \sin ^{2} x=\cos x \\
\cos x\left(\cos ^{2} x+\sin ^{2} x\right) \\
\cos x(1) \\
\cos x \mid \cos x \quad \sqrt{ }
\end{array}
$$

Example 2 The Pythagorean Identities.

Pythagorean Identities
a) Using the definition of the unit circle, derive the identity $\sin ^{2} x+\cos ^{2} x=1$. Why is $\sin ^{2} x+\cos ^{2} x=1$ called a Pythagorean Identity?

b) Verify that $\sin ^{2} x+\cos ^{2} x=1$ is an identity using i) $x=\frac{\pi}{6}$ and ii) $x=\frac{\pi}{2}$.
c) Verify that $\sin ^{2} x+\cos ^{2} x=1$ is an identity using a graphing calculator to draw the graph.

$$
\sin ^{2} x+\cos ^{2} x=1
$$

$\cos ^{3} x+\cos x \sin ^{2} x=\cos x$
$\cos x\left(\cos ^{2} x+\sin ^{2} x\right)$
$\cos x(1)$
$\cos x \cos x \quad \sqrt{ }$
d) Using the identity $\sin ^{2} x+\cos ^{2} x=1$, derive $1+\cot ^{2} x=\csc ^{2} x$ and $\tan ^{2} x+1=\sec ^{2} x$.
e) Verify that $1+\cot ^{2} x=\csc ^{2} x$ and $\tan ^{2} x+1=\sec ^{2} x$ are identities for $x=\frac{\pi}{4}$.
f) Verify that $1+\cot ^{2} x=\csc ^{2} x$ and $\tan ^{2} x+1=\sec ^{2} x$ are identities graphically.

Trigonometry
 LESSON SIX- Trigonometric Identities I Lesson Notes

$$
\left.\begin{array}{r}
\cos ^{3} x+\cos x \sin ^{2} x=\cos x \\
\cos x\left(\cos ^{2} x+\sin ^{2} x\right) \\
\cos x(1) \\
\cos x
\end{array} \right\rvert\, \cos x \quad \sqrt{ } \quad .
$$

Example 3

a) $\sin x \sec x=\tan x$

Prove that each trigonometric statement is an identity. State the non-permissible values of x so the identity is true.

NOTE: You will need to use a graphing calculator to obtain the graphs in this lesson. Make sure the calculator is in RADIAN mode, and use window settings that match the grid provided in each example.

Reciprocal Identities

$\sec x=\frac{1}{\cos x}$
$\csc x=\frac{1}{\sin x}$
$\cot x=\frac{1}{\tan x}=\frac{\cos x}{\sin x}$

b) $\cot x \sin x \sec x=1$

Rewrite the identity so it is absolutely true. (i.e. Include restrictions on the variable)

$$
\left.\begin{array}{r}
\cos ^{3} x+\cos x \sin ^{2} x=\cos x \\
\cos x\left(\cos ^{2} x+\sin ^{2} x\right) \\
\cos x(1) \\
\cos x
\end{array} \right\rvert\, \cos x \quad \sqrt{ }
$$

Example 4

a) $\frac{\sin x \sec x}{\cot x}=\tan ^{2} x$

Prove that each trigonometric statement is an identity. State the non-permissible values of x so the identity is true.

Reciprocal Identities

$\sec x=\frac{1}{\cos x}$
$\csc x=\frac{1}{\sin x}$
$\cot x=\frac{1}{\tan x}=\frac{\cos x}{\sin x}$

b) $\sin 2 x \sec 2 x=\tan 2 x$

Trigonometry
 LESSON SIX- Trigonometric Identities I Lesson Notes

$$
\begin{array}{r}
\cos ^{3} x+\cos x \sin ^{2} x=\cos x \\
\cos x\left(\cos ^{2} x+\sin ^{2} x\right) \\
\cos x(1) \\
\cos x \mid \cos x \quad \sqrt{ }
\end{array}
$$

Example 5

Prove that each trigonometric statement is an identity. State the non-permissible values of x so the identity is true.
a) $\sin ^{2} x+\frac{1}{\sec ^{2} x}=1$

Pythagorean Identities

$\sin ^{2} x+\cos ^{2} x=1$
$1+\tan ^{2} x=\sec ^{2} x$
$1+\cot ^{2} x=\csc ^{2} x$

Rewrite the identity so it is absolutely true. (i.e. Include restrictions on the variable)

b) $\cos x-\cos ^{3} x=\cos x \sin ^{2} x$

Rewrite the identity so it is absolutely true. (i.e. Include restrictions on the variable)

$$
\left.\begin{array}{r}
\cos ^{3} x+\cos x \sin ^{2} x=\cos x \\
\cos x\left(\cos ^{2} x+\sin ^{2} x\right) \\
\cos x(1) \\
\cos x
\end{array} \right\rvert\, \cos x \quad \sqrt{ }
$$

C) $\sin ^{3} x-\sin x=-\sin x \cos ^{2} x$

Pythagorean Identities

$\sin ^{2} x+\cos ^{2} x=1$
$1+\tan ^{2} x=\sec ^{2} x$
$1+\cot ^{2} x=\csc ^{2} x$

Rewrite the identity so it is absolutely true. (i.e. Include restrictions on the variable)

d) $\sin ^{2} x+\sin ^{2} x \cos ^{2} x=\sin ^{2} x\left(1+\cos ^{2} x\right)$

Trigonometry
 LESSON SIX- Trigonometric Identities I Lesson Notes

$$
\left.\begin{array}{r}
\cos ^{3} x+\cos x \sin ^{2} x=\cos x \\
\cos x\left(\cos ^{2} x+\sin ^{2} x\right) \\
\cos x(1) \\
\cos x
\end{array} \right\rvert\, \cos x \quad \sqrt{ }
$$

Example 6

Prove that each trigonometric statement is an identity. State the non-permissible values of x so the identity is true.
a) $\cos ^{2} x+\tan ^{2} x \cos ^{2} x=1$

$$
\begin{gathered}
\text { Pythagorean Identities } \\
\hline \sin ^{2} x+\cos ^{2} x=1 \\
1+\tan ^{2} x=\sec ^{2} x \\
1+\cot ^{2} x=\csc ^{2} x
\end{gathered}
$$

Rewrite the identity so it is absolutely true. (i.e. Include restrictions on the variable)

b) $\frac{\sec ^{2} x-1}{1+\tan ^{2} x}=\sin ^{2} x$

Rewrite the identity so it is absolutely true. (i.e. Include restrictions on the variable)

$$
\left.\begin{array}{r}
\cos ^{3} x+\cos x \sin ^{2} x=\cos x \\
\cos x\left(\cos ^{2} x+\sin ^{2} x\right) \\
\cos x(1) \\
\cos x
\end{array} \right\rvert\, \cos x \quad \sqrt{ } \quad \text {. }
$$

c) $\frac{\sin ^{2} x}{1-\cos x}=1+\cos x$

Pythagorean Identities

$\sin ^{2} x+\cos ^{2} x=1$
$1+\tan ^{2} x=\sec ^{2} x$
$1+\cot ^{2} x=\csc ^{2} x$

Rewrite the identity so it is absolutely true. (i.e. Include restrictions on the variable)

d) $\left(\frac{\sec ^{2} x}{\csc ^{2} x}\right)\left(\csc ^{2} x-1\right)=1$

Trigonometry
 LESSON SIX- Trigonometric Identities I Lesson Notes

$$
\begin{array}{r}
\cos ^{3} x+\cos x \sin ^{2} x=\cos x \\
\cos x\left(\cos ^{2} x+\sin ^{2} x\right) \\
\cos x(1) \\
\cos x \mid \cos x \quad \sqrt{ }
\end{array}
$$

Example 7

Prove that each trigonometric statement is an identity. State the non-permissible values of x so the identity is true.
a) $1+\sec x=\frac{\cos x+1}{\cos x}$

$$
\left.\begin{array}{r}
\cos ^{3} x+\cos x \sin ^{2} x=\cos x \\
\cos x\left(\cos ^{2} x+\sin ^{2} x\right) \\
\cos x(1) \\
\cos x
\end{array} \right\rvert\, \cos x \quad \sqrt{ }
$$

C) $\cot x+\tan x=\csc x \sec x$

Common
Denominator
Proofs

Rewrite the identity so it is absolutely true.
(i.e. Include restrictions on the variable)

d) $\frac{1+\tan x}{1+\cot x}=\tan x$

Trigonometry
 LESSON SIX- Trigonometric Identities I Lesson Notes

$$
\left.\begin{array}{r}
\cos ^{3} x+\cos x \sin ^{2} x=\cos x \\
\cos x\left(\cos ^{2} x+\sin ^{2} x\right) \\
\cos x(1) \\
\cos x
\end{array} \right\rvert\, \cos x \quad \sqrt{ } \quad .
$$

Example 8

Prove that each trigonometric statement is an identity. State the non-permissible values of x so the identity is true.

Common
Denominator
Proofs
a) $\frac{\sin x}{\cos x}+\frac{\cos x}{1+\sin x}=\sec x$

b) $\frac{1+\tan ^{2} x}{1+\cot ^{2} x}=\tan ^{2} x$

$$
\left.\begin{array}{r}
\cos ^{3} x+\cos x \sin ^{2} x=\cos x \\
\cos x\left(\cos ^{2} x+\sin ^{2} x\right) \\
\cos x(1) \\
\cos x
\end{array} \right\rvert\, \cos x \quad \sqrt{ } \quad .
$$

c) $\frac{\cos x}{1+\sin x}+\frac{\cos x}{1-\sin x}=2 \sec x$

Common
Denominator
Proofs

Rewrite the identity so it is absolutely true.
(i.e. Include restrictions on the variable)

d) $\frac{\cos x}{1-\sin x}=\frac{1+\sin x}{\cos x}$

Trigonometry
 LESSON SIX- Trigonometric Identities I Lesson Notes

$$
\begin{array}{r}
\cos ^{3} x+\cos x \sin ^{2} x=\cos x \\
\cos x\left(\cos ^{2} x+\sin ^{2} x\right) \\
\cos x(1) \\
\cos x \mid \cos x \quad \sqrt{ }
\end{array}
$$

Example 9

Prove each identity.
For simplicity, ignore NPV's and graphs.
a) $-\frac{4 \cot x}{1-\csc ^{2} x}=4 \tan x$
b) $\sin ^{4} x-\cos ^{4} x=2 \sin ^{2} x-1$
c) $\cot ^{2} x-\csc ^{2} x=-1$
d) $\csc x-\sin x=\cos x \cot x$
$\cos ^{3} x+\cos x \sin ^{2} x=\cos x$

$$
\left.\begin{array}{r|}
\cos x\left(\cos ^{2} x+\sin ^{2} x\right) \\
\cos x(1) \\
\cos x
\end{array}\right|_{\cos x \quad \sqrt{2}}
$$

a) $\frac{1}{\csc x \sin x \tan x}=\cot x$
b) $\frac{\csc ^{2} x \cos x}{\tan x}=\csc ^{3} x-\csc x$
C) $\frac{1}{5} \sin ^{2} x+\frac{1}{5} \cos ^{2} x=\frac{1}{5}$
d) $\frac{\sec x-\cos x}{\sin x}=\tan x$

Trigonometry
 LESSON SIX- Trigonometric Identities I Lesson Notes

$$
\left.\begin{array}{r}
\cos ^{3} x+\cos x \sin ^{2} x=\cos x \\
\cos x\left(\cos ^{2} x+\sin ^{2} x\right) \\
\cos x(1) \\
\cos x
\end{array} \right\rvert\, \cos x \quad \sqrt{ }
$$

Example 11

Prove each identity.
For simplicity, ignore NPV's and graphs.
a) $\frac{\sin x}{1-\cos x}=\frac{1+\cos x}{\sin x}$
b) $\frac{1-\cos x}{\sin x}-\frac{\sin x}{1+\cos x}=0$
c) $(\tan x-1)^{2}=\frac{1-2 \sin x \cos x}{\cos ^{2} x}$
d) $\frac{1+\cos x}{1-\cos x}=\left(\frac{1+\cos x}{\sin x}\right)^{2}$
$\cos ^{3} x+\cos x \sin ^{2} x=\cos x$
$\cos x\left(\cos ^{2} x+\sin ^{2} x\right)$
$\cos x(1)$
$\cos x \cos x \quad \sqrt{ }$

Example 12 Exploring the proof of $\sin x=\tan x \cos x$

a) Prove algebraically that $\sin x=\tan x \cos x$.
b) Verify that $\sin x=\tan x \cos x$ for $\frac{\pi}{3}$.
c) State the non-permissible values for $\sin x=\tan x \cos x$.
d) Show graphically that $\sin x=\tan x \cos x$ Are the graphs exactly the same?

Trigonometry
 LESSON SIX- Trigonometric Identities I Lesson Notes

$$
\begin{array}{r}
\cos ^{3} x+\cos x \sin ^{2} x=\cos x \\
\cos x\left(\cos ^{2} x+\sin ^{2} x\right) \\
\cos x(1) \\
\cos x \mid \cos x \quad \sqrt{ }
\end{array}
$$

Example 13 Exploring the proof of $\csc x+\cot x=\frac{1+\cos x}{\sin x}$
b) Verify that $\csc x+\cot x=\frac{1+\cos x}{\sin x}$ for $\frac{\pi}{3}$.
a) Prove algebraically that $\csc x+\cot x=\frac{1+\cos x}{\sin x}$.
c) State the non-permissible values for $\csc x+\cot x=\frac{1+\cos x}{\sin x}$.
d) Show graphically that $\csc x+\cot x=\frac{1+\cos x}{\sin x}$ Are the graphs exactly the same?

$$
\left.\begin{array}{r}
\cos ^{3} x+\cos x \sin ^{2} x=\cos x \\
\cos x\left(\cos ^{2} x+\sin ^{2} x\right) \\
\cos x(1) \\
\cos x
\end{array} \right\rvert\, \cos x \quad \sqrt{ }
$$

Example 14 Exploring the proof of $\frac{1}{1-\cos x}+\frac{1}{1+\cos x}=2 \csc ^{2} x$

Exploring
a Proof

a) Prove algebraically that
b) Verify that $\frac{1}{1-\cos x}+\frac{1}{1+\cos x}=2 \csc ^{2} x$ for $\frac{\pi}{2}$.
$\frac{1}{1-\cos x}+\frac{1}{1+\cos x}=2 \csc ^{2} x$.
d) Show graphically that
c) State the the non-permissible values for $\frac{1}{1-\cos x}+\frac{1}{1+\cos x}=2 \csc ^{2} x$.
$\frac{1}{1-\cos x}+\frac{1}{1+\cos x}=2 \csc ^{2} x$
Are the graphs exactly the same?

Trigonometry
 LESSON SIX- Trigonometric Identities I Lesson Notes

$$
\left.\begin{array}{r}
\cos ^{3} x+\cos x \sin ^{2} x=\cos x \\
\cos x\left(\cos ^{2} x+\sin ^{2} x\right) \\
\cos x(1) \\
\cos x
\end{array} \right\rvert\, \cos x \quad \sqrt{ }
$$

Example 15
Solve each trigonometric equation
Equations With Identities over the domain $0 \leq x \leq 2 \pi$.
a) $2 \sin ^{2} x-\cos x-1=0$
b) $\sin x=\sec x \cot x$

d) $\cos ^{2} x=\sin ^{2} x$
C) $2 \tan ^{2} x=-3 \sec x$

$\cos ^{3} x+\cos x \sin ^{2} x=\cos x$
$\cos x\left(\cos ^{2} x+\sin ^{2} x\right)$
$\cos x(1)$
$\cos x \mid \cos x \quad \sqrt{ }$
a) $3-3 \csc x+\cot ^{2} x=0$
b) $3 \sin ^{2} x+3 \cos x-4=\sin ^{2} x-2 \cos x$

C) $\sin ^{3} x=\sin x$
d) $2 \sin ^{3} x-2 \cos ^{2} x-\sin x+1=0$

Trigonometry
 LESSON SIX- Trigonometric Identities I Lesson Notes

$$
\left.\begin{array}{r}
\cos ^{3} x+\cos x \sin ^{2} x=\cos x \\
\cos x\left(\cos ^{2} x+\sin ^{2} x\right) \\
\cos x(1) \\
\cos x
\end{array} \right\rvert\, \cos x \quad \sqrt{ }
$$

Example 17
Solve each trigonometric equation
Equations With Identities over the domain $0 \leq x \leq 2 \pi$.
a) $2 \sec ^{2} x-\tan ^{4} x=-1$
b) $2 \cos ^{3} x+3 \cos x=7 \cos ^{2} x$

C) $\tan ^{2} x+2 \sec ^{2} x-3=0$

d) $4 \sin ^{2} x+2 \sqrt{2} \sin x+2 \sqrt{3} \sin x+\sqrt{6}=0$

$$
\left.\begin{array}{r}
\cos ^{3} x+\cos x \sin ^{2} x=\cos x \\
\cos x\left(\cos ^{2} x+\sin ^{2} x\right) \\
\cos x(1) \\
\cos x
\end{array} \right\rvert\, \cos x \quad \sqrt{ }
$$

Trigonometry
 LESSON SIX - Trigonometric Identities I Lesson Notes

Example 18
Use the Pythagorean identities to find the indicated value and draw the corresponding triangle.

Pythagorean Identities
and Finding an Unknown
a) If the value of $\sin x=\frac{4}{7}, 0 \leq x \leq \frac{\pi}{2}$, find the value of $\cos x$ within the same domain.

b) If the value of $\tan A=\frac{3}{2}, \pi<A<\frac{3 \pi}{2}$, find the value of $\sec A$ within the same domain.

c) If $\cos \theta=\frac{\sqrt{7}}{7}$, and $\cot \theta<0$, find the exact value of $\sin \theta$.

Trigonometry
 LESSON SIX- Trigonometric Identities I Lesson Notes

$$
\left.\begin{array}{r}
\cos ^{3} x+\cos x \sin ^{2} x=\cos x \\
\cos x\left(\cos ^{2} x+\sin ^{2} x\right) \\
\cos x(1) \\
\cos x
\end{array} \right\rvert\, \cos x \quad \sqrt{ }
$$

Example 19 Trigonometric Substitution.

> Trigonometric Substitution
a) Using the triangle to the right, show that $\frac{\sqrt{9-b^{2}}}{b^{2}}$ can be expressed as $\frac{\cos \theta}{3 \sin ^{2} \theta}$.

Hint: Use the triangle to find a trigonometric expression equivalent to b.

a
b) Using the triangle to the right, show that $\frac{a^{2}}{\sqrt{a^{2}+16}}$ can be expressed as $4 \cot \theta \cos \theta$.

Hint: Use the triangle to find a trigonometric expression equivalent to a.

LESSON SEVEN - Trigonometric Identities II Lesson Notes

Example 1

Evaluate each trigonometric sum or difference.
a) $\sin \left(\frac{\pi}{3}+\frac{\pi}{4}\right)=$
b) $\sin \left(\frac{\pi}{2}-\frac{\pi}{6}\right)=$

$$
\begin{aligned}
& \text { Sum and Difference Identities } \\
& \hline \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}
\end{aligned}
$$

c) $\cos \left(45^{\circ}-60^{\circ}\right)=$
d) $\cos \left(\frac{\pi}{3}+\frac{\pi}{6}\right)=$
e) $\tan \left(\frac{\pi}{4}+\frac{\pi}{3}\right)=$
f) $\tan \left(\frac{\pi}{6}-\frac{\pi}{3}\right)=$

Trigonometry
 LESSON SEVEN- Trigonometric Identities II Lesson Notes

Example 2

Write each expression as a single trigonometric ratio.
a) $\sin \frac{\pi}{6} \cos \frac{\pi}{2}+\cos \frac{\pi}{6} \sin \frac{\pi}{2}$

$$
\begin{aligned}
& \text { Sum and Difference Identities } \\
& \hline \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}
\end{aligned}
$$

b) $\frac{\tan \frac{\pi}{4}-\tan \frac{\pi}{6}}{1+\tan \frac{\pi}{4} \tan \frac{\pi}{6}}$
C) $\cos \frac{\pi}{3} \cos \frac{\pi}{6}+\sin \frac{\pi}{3} \sin \frac{\pi}{6}$

Trigonometry

LESSON SEVEN - Trigonometric Identities II Lesson Notes

Example 3

a) $\cos 15^{\circ}$

Find the exact value of each expression.

Sum and Difference Identities

$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$
$\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$
$\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
b) $\sin \frac{5 \pi}{12}$
C) $\tan 195^{\circ}$
d) Given the exact values of cosine and sine for 15°, fill in the blanks for the other angles.

Trigonometry
 LESSON SEVEN- Trigonometric Identities II Lesson Notes

Example 4

a) $\csc \left(\frac{\pi}{3}+\frac{\pi}{4}\right)$

Find the exact value of each expression.
For simplicity, do not rationalize the denominator.

Sum and Difference Identities

$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$
$\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$
$\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
b) $\sec \left(\frac{\pi}{12}\right)$
C) $\cot \left(\frac{\pi}{2}-\frac{\pi}{4}\right)$

LESSON SEVEN - Trigonometric Identities II Lesson Notes

Example 5 Double-angle identities.

a) Prove the double-angle sine identity, $\sin 2 x=2 \sin x \cos x$.

Double-Angle Identities
$\sin 2 x=2 \sin x \cos x$
$\cos 2 x=\cos ^{2} x-\sin ^{2} x$
$\cos 2 x=2 \cos ^{2} x-1$
$\cos 2 x=1-2 \sin ^{2} x$
$\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$

b) Prove the double-angle cosine identity, $\cos 2 x=\cos ^{2} x-\sin ^{2} x$.
c) The double-angle cosine identity, $\cos 2 x=\cos ^{2} x-\sin ^{2} x$, can be expressed as $\cos 2 x=1-2 \sin ^{2} x$ or $\cos 2 x=2 \cos ^{2} x-1$. Derive each identity.
d) Derive the double-angle tan identity, $\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$.

Trigonometry
 LESSON SEVEN- Trigonometric Identities II Lesson Notes

Example 6 Double-angle identities.

a) Evaluate each of the following expressions using a double-angle identity.
i) $\sin 60^{\circ}$
ii) $\cos \frac{\pi}{2}$
iii) $\tan 90^{\circ}$

Double-Angle Identities
$\sin 2 x=2 \sin x \cos x$
$\cos 2 x=\cos ^{2} x-\sin ^{2} x$
$\cos 2 x=2 \cos ^{2} x-1$
$\cos 2 x=1-2 \sin ^{2} x$
$\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$

b) Express each of the following expressions using a double-angle identity.
i) $\sin 8 x$
ii) $\cos 4 x$
iii) $\sin x$
iv) $\cos \frac{1}{2} x$
c) Write each of the following expression as a single trigonometric ratio using a double-angle identity.
i) $\cos ^{2} 30^{\circ}-\sin ^{2} 30^{\circ}$
ii) $\sin \frac{\pi}{8} \cos \frac{\pi}{8}$
iii) $1-\sin ^{2} \frac{1}{2} x$

$$
\text { iv) } \frac{2 \tan \frac{x}{8}}{1-\tan ^{2} \frac{x}{8}}
$$

LESSON SEVEN - Trigonometric Identities II Lesson Notes

Example 7

Prove each trigonometric identity.
Note: Variable restrictions may be ignored for the proofs in this lesson.
a) $\cos \left(x+\frac{5 \pi}{6}\right)=-\frac{\sqrt{3} \cos x+\sin x}{2}$

$$
\begin{aligned}
& \text { Sum and Difference Identities } \\
& \hline \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}
\end{aligned}
$$

b) $\sin \left(\frac{3 \pi}{2}-x\right)=-\cos x$
c) $\tan \left(x-\frac{3 \pi}{4}\right)=\frac{\tan x+1}{1-\tan x}$
d) $\cos (x+y)+\cos (x-y)=2 \cos x \cos y$

Trigonometry
 LESSON SEVEN- Trigonometric Identities II Lesson Notes

Example 8

Prove each trigonometric identity.
a) $\cos \left(x+\frac{\pi}{6}\right)-\sin \left(x+\frac{2 \pi}{3}\right)=0$

$$
\begin{aligned}
& \text { Sum and Difference Identities } \\
& \hline \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}
\end{aligned}
$$

b) $\frac{\sin (x-y)}{\cos x \cos y}=\tan x-\tan y$
C) $\cos (x+y) \cos (x-y)=(\cos x \cos y)^{2}-(\sin x \sin y)^{2}$
d) $\cos 2 x=\cos ^{2} x-\sin ^{2} x$

LESSON SEVEN - Trigonometric Identities II Lesson Notes

Example 9

Prove each trigonometric identity.
$\begin{array}{ll}\cos 2 x+2 \sin ^{2} x=1 & \text { b) } \frac{2}{1+\cos 2 x}=\sec ^{2} x\end{array}$
Double-Angle Identities
$\sin 2 x=2 \sin x \cos x$
$\cos 2 x=\cos ^{2} x-\sin ^{2} x$
$\cos 2 x=2 \cos ^{2} x-1$
$\cos 2 x=1-2 \sin ^{2} x$
$\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$
c) $\frac{\sin 2 x}{\cos 2 x+\sin ^{2} x}=2 \tan x$
d) $\frac{2 \sin x \cos x}{\cos ^{2} x-\sin ^{2} x}=\tan 2 x$

Trigonometry
 LESSON SEVEN- Trigonometric Identities II Lesson Notes

$$
\begin{aligned}
& \cos 15^{\circ}=\frac{\sqrt{6}+\sqrt{2}}{4} \\
& \sin 15^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4}
\end{aligned}
$$

Example 10 Prove each trigonometric identity.
a) $\cos ^{4} x-\sin ^{4} x=\cos 2 x$
b) $1-(\sin x+\cos x)^{2}=-\sin 2 x$

$$
\begin{aligned}
& \text { Double-Angle Identities } \\
& \hline \sin 2 x=2 \sin x \cos x \\
& \cos 2 x=\cos ^{2} x-\sin ^{2} x \\
& \cos 2 x=2 \cos ^{2} x-1 \\
& \cos 2 x=1-2 \sin ^{2} x \\
& \tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}
\end{aligned}
$$

c) $\frac{2(\tan x-\cot x)}{\tan ^{2} x-\cot ^{2} x}=\sin 2 x$
d) $\frac{1}{1-\tan x}-\frac{1}{1+\tan x}=\tan 2 x$

LESSON SEVEN - Trigonometric Identities II Lesson Notes

Example 11

Prove each trigonometric identity.
Assorted Proofs
a) $2 \csc 2 x=\csc x \sec x$
b) $\frac{\sin (x+y)}{\cos x \sin y}=\tan x \cot y+1$
C) $\sin 88^{\circ} \cos 58^{\circ}-\cos 88^{\circ} \sin 58^{\circ}=\frac{1}{2}$
d) $\tan \left(x+\frac{\pi}{4}\right)=\frac{\tan x+1}{1-\tan x}$

Trigonometry
 LESSON SEVEN- Trigonometric Identities II Lesson Notes

Example 12
Prove each trigonometric identity.
a) $(\sin x+\cos x)^{2}-1=\sin 2 x$
b) $\frac{1}{2} \sin \frac{2 x}{5}=\sin \frac{x}{5} \cos \frac{x}{5}$
c) $\cos ^{2}\left(x-\frac{\pi}{2}\right)=\sin ^{2} x$
d) $\sin 3 x=3 \sin x-4 \sin ^{3} x$

LESSON SEVEN - Trigonometric Identities II Lesson Notes

Example 13 Prove each trigonometric identity.

a) $\frac{5 \sin x-\cos 2 x-11}{2 \sin x-3}=\sin x+4$
b) $\cos 3 x=4 \cos ^{3} x-3 \cos x$
C) $\cos 34^{\circ} \cos 41^{\circ}-\sin 34^{\circ} \sin 41^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4}$
d) $\frac{\tan x+\tan y}{\sec x \sec y}=\sin (x+y)$

Trigonometry
 LESSON SEVEN- Trigonometric Identities II Lesson Notes

$$
\begin{aligned}
& \cos 15^{\circ}=\frac{\sqrt{6}+\sqrt{2}}{4} \\
& \sin 15^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4}
\end{aligned}
$$

Example 14

Solve each trigonometric equation over the domain $0 \leq x \leq 2 \pi$.

Assorted Equations
a) $\cos 2 x=\cos ^{2} x$
b) $\cos \left(x+\frac{\pi}{4}\right)+\cos \left(x-\frac{\pi}{4}\right)=-1$
C) $4 \sin ^{2} x+4 \cos 2 x-1=0$
d) $2 \cos ^{2} \frac{1}{2} x-2 \sin ^{2} \frac{1}{2} x=1$

Trigonometry
LESSON SEVEN - Trigonometric Identities II Lesson Notes

Example 15 Solve each trigonometric equation over the domain $0 \leq x \leq 2 \pi$.
a) $\cos 2 x+7 \sin x-4=0$
b) $\sin 2 x-\cos x=0$
c) $\sin \left(\frac{\pi}{3}+x\right)-\sin \left(\frac{\pi}{3}-x\right)=1$
d) $\sin x \cos x=\frac{1}{4}$

Trigonometry
 LESSON SEVEN- Trigonometric Identities II Lesson Notes

$$
\begin{aligned}
& \cos 15^{\circ}=\frac{\sqrt{6}+\sqrt{2}}{4} \\
& \sin 15^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4}
\end{aligned}
$$

Example 16

Solve each trigonometric equation over the domain $0 \leq x \leq 2 \pi$.

Assorted Equations
a) $\cos 2 x-\cos x=0$
b) $\csc \left(x+\frac{\pi}{2}\right)-\csc \left(x-\frac{\pi}{2}\right)=4$
C) $\frac{1}{2} \sin 2 x+\sin x=0$
d) $2 \cot ^{2} x-3 \csc x=0$

Trigonometry
LESSON SEVEN - Trigonometric Identities II Lesson Notes

Example 17
Solve each trigonometric equation over the domain $0 \leq x \leq 2 \pi$.

Assorted Equations
a) $8 \sin x \cos x=2$
b) $(\cos x-\sin x)^{2}=\sin 2 x+1$
C) $\tan (x-\pi)+\sec x=0$
d) $\cos (x+\pi)-\cos ^{2} x=0$

Trigonometry
 LESSON SEVEN- Trigonometric Identities II Lesson Notes

Example 18 Trigonometric identities and geometry.
a) Show that $\tan B=\frac{\tan A+\tan C}{1-\tan A \tan C}$

b) If $A=32^{\circ}$ and $B=89^{\circ}$, what is the value of C ?

Trigonometry
LESSON SEVEN - Trigonometric Identities II Lesson Notes

Example 19 Trigonometric identities and geometry.
Solve for x . Round your answer to the nearest tenth.

153

Trigonometry
 LESSON SEVEN- Trigonometric Identities II Lesson Notes

Example 20

If a cannon shoots a cannonball θ degrees above the horizontal, the horizontal distance traveled by the cannonball before it hits
 the ground can be found with the function:

$$
d(\theta)=\frac{v_{i}^{2} \sin \theta \cos \theta}{4.9}
$$

The initial velocity of the cannonball is $36 \mathrm{~m} / \mathrm{s}$.
a) Rewrite the function so it involves a single trigonometric identity.
b) Graph the function. Use the graph to describe the trajectory of the cannonball at the following angles: $0^{\circ}, 45^{\circ}$, and 90°.

c) If the cannonball travels a horizontal distance of 100 m , find the angle of the cannon. Solve graphically, and round your answer to the nearest tenth of a degree.

$$
\begin{aligned}
& \cos 15^{\circ}=\frac{\sqrt{6}+\sqrt{2}}{4} \\
& \sin 15^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4}
\end{aligned}
$$

LESSON SEVEN - Trigonometric Identities II Lesson Notes

Trigonometry

Example 21

An engineer is planning the construction of a road through a tunnel. In one possible design, the width of the road maximizes the area of a rectangle inscribed within the cross-section of the tunnel.

The angle of elevation from the centre line of the road to the upper corner of the rectangle is θ. Sidewalks on either side of the road are included in the design.
a) If the area of the rectangle can be represented by the function $A(\theta)=m \sin 2 \theta$, what is the value of m ?
b) What angle maximizes the area of the rectangular cross-section?
c) For the angle that maximizes the area:
i) What is the width of the road?
ii) What is the height of the tallest vehicle that will pass through the tunnel?
iii) What is the width of one of the sidewalks?

Express answers as exact values.

Trigonometry
 LESSON SEVEN- Trigonometric Identities II Lesson Notes

Example 22

The improper placement of speakers for a home theater system may result in a diminished sound quality at the primary viewing area.

This phenomenon occurs because sound waves interact with each other in a process called interference. When two sound waves undergo interference, they combine to form a resultant sound wave that has an amplitude equal to the sum of the component sound wave amplitudes.

If the amplitude of the resultant wave is larger than the component wave amplitudes, we say the component waves experienced constructive interference.

If the amplitude of the resultant wave is smaller than the component wave amplitudes, we say the component waves experienced destructive interference.
a) Two sound waves are represented with $f(\theta)$ and $g(\theta)$.
i) Draw the graph of $y=f(\theta)+g(\theta)$ and determine the resultant wave function.
ii) Is this constructive or destructive interference?
iii) Will the new sound be louder or quieter than the original sound?

$$
\cos 15^{\circ}=\frac{\sqrt{6}+\sqrt{2}}{4}
$$

$$
\sin 15^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4}
$$

LESSON SEVEN - Trigonometric Identities II Lesson Notes

b) A different set of sound waves are represented with $m(\theta)$ and $n(\theta)$.
i) Draw the graph of $y=m(\theta)+n(\theta)$ and determine the resultant wave function.
ii) Is this constructive or destructive interference?
iii) Will the new sound be louder or quieter than the original sound?

c) Two sound waves experience total destructive interference if the sum of their wave functions is zero. Given $p(\theta)=\sin (3 \theta-3 \pi / 4)$ and $q(\theta)=\sin (3 \theta-7 \pi / 4)$, show that these waves experience total destructive interference.

Trigonometry
 LESSON SEVEN- Trigonometric Identities II Lesson Notes

Example 23 Even \& Odd Identities

a) Explain what is meant by the terms even function and odd function.

Even \& Odd Identities

$$
\begin{aligned}
& \sin (-x)=-\sin x \\
& \cos (-x)=\cos x \\
& \tan (-x)=-\tan x
\end{aligned}
$$

b) Explain how the even $\mathbb{\&}$ odd identities work.
(Reference the unit circle or trigonometric graphs in your answer.)
c) Prove the three even \& odd identities algebraically.

Trigonometry

LESSON SEVEN - Trigonometric Identities II Lesson Notes

Example 24

Proving the sum and difference identities.
a) Explain how to construct the diagram shown.

b) Explain the next steps in the construction.

Trigonometry
 LESSON SEVEN- Trigonometric Identities II Lesson Notes

c) State the side lengths of all the triangles.

d) Prove the sum and difference identity for sine.

Answer Key

Trigonometry Lesson Five: Trigonometric Equations
Note: $n \varepsilon I$ for all general solutions.
Example 1:
a) $\theta=\frac{\pi}{3}+n(2 \pi), \quad \theta=\frac{2 \pi}{3}+n(2 \pi)$
b) $\theta=\frac{2 \pi}{3}+n(2 \pi), \quad \theta=\frac{4 \pi}{3}+n(2 \pi)$
c) $\theta=n \pi$
d) $\theta=\frac{\pi}{4}+n\left(\frac{\pi}{2}\right)$

Example 2:

a) $\theta=\frac{\pi}{6}+n(2 \pi), \theta=\frac{5 \pi}{6}+n(2 \pi)$
b) $\theta=\frac{3 \pi}{2}+n(2 \pi)$
c) $\quad \theta=\frac{3 \pi}{4}+n(2 \pi), \quad \theta=\frac{5 \pi}{4}+n(2 \pi)$

d) no solution

e) $\theta=\frac{2 \pi}{3}+n \pi$
f) $\theta=\frac{\pi}{2}+n \pi$

Example 3:

a) $\theta=30^{\circ}+n\left(360^{\circ}\right), \theta=150^{\circ}+n\left(360^{\circ}\right)$
b) $\theta=150^{\circ}+n\left(360^{\circ}\right), \theta=210^{\circ}+n\left(360^{\circ}\right)$
c) $\theta=45^{\circ}+n\left(180^{\circ}\right)$

Example 4:

a) $\theta=\frac{\pi}{2}$
b) $\theta=\frac{\pi}{3}, \frac{5 \pi}{3}$

Answer Key

Example 5:

a) $\theta=\frac{2 \pi}{3}, \frac{4 \pi}{3}$
b) $\theta=\frac{2 \pi}{3}, \frac{4 \pi}{3}$
c) $\theta=\frac{2 \pi}{3}, \frac{4 \pi}{3}$
d) $\theta=\frac{2 \pi}{3}, \frac{4 \pi}{3}$

Example 6:

a) 197.46° and 342.54°
b) 197.46° and 342.54°
c) 197.46° and 342.54°
d) 197.46° and 342.54°

Example 7:

The unit circle is not useful for this question.
a) $\theta=\frac{2 \pi}{3}+n(2 \pi), \theta=\frac{4 \pi}{3}+n(2 \pi)$
b) $\theta=n \pi$
c) $\theta=\frac{3 \pi}{4}+n \pi$

Example 8:

a) No Solution

d) $\theta=\pi+n(2 \pi)$
e) $\theta=\frac{\pi}{3}+n \pi$

c) $\theta=\frac{\pi}{3}+n(2 \pi), \theta=\frac{5 \pi}{3}+n(2 \pi)$

f) $\theta=\frac{\pi}{2}+n \pi$

Answer Key

Example 9:

a) $\theta=120^{\circ}+n\left(360^{\circ}\right), \theta=240^{\circ}+n\left(360^{\circ}\right)$
b) $\theta=60^{\circ}+n\left(360^{\circ}\right), \theta=120^{\circ}+n\left(360^{\circ}\right)$
c) $\theta=60^{\circ}+n\left(180^{\circ}\right)$

Example 10:

a) No Solution

θ-intercepts

b) $\theta=n(2 \pi)$

Intersection point(s)
of original equation

θ-intercepts

Example 11:

a) $\theta=\frac{7 \pi}{6}, \frac{11 \pi}{6}$
b) $\theta=\frac{7 \pi}{6}, \frac{11 \pi}{6}$
c) $\theta=\frac{7 \pi}{6}, \frac{11 \pi}{6}$
d) $\theta=\frac{7 \pi}{6}, \frac{11 \pi}{6}$

Example 12:
a) $\theta=115^{\circ}, 245^{\circ}$
b) $\theta=115^{\circ}, 245^{\circ}$
c) $\theta=115^{\circ}, 245^{\circ}$
d) $\theta=115^{\circ}, 245^{\circ}$

The unit circle is not useful for this question.

Example 13:
a) $\theta=n(2 \pi)$
b) $\theta=\frac{\pi}{3}+n(2 \pi), \theta=\frac{2 \pi}{3}+n(2 \pi)$
c) $\theta=59^{\circ}+n\left(180^{\circ}\right)$ or $\theta=1.03+n \pi$
d) $\theta=\frac{2 \pi}{3}+n(2 \pi), \theta=\frac{4 \pi}{3}+n(2 \pi)$

Example 14:
a) $\theta=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$
b) $\theta=0, \pi, 2 \pi$
c) $\theta=0, \frac{\pi}{4}, \pi, \frac{5 \pi}{4}, 2 \pi$
d) $\theta=0, \pi, 2 \pi$

Example 15:
a) $\theta=\frac{\pi}{2}, \frac{3 \pi}{2}$

b) $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
c) $\theta=\frac{\pi}{3}, \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{3}$
d) $\theta=0, \frac{\pi}{4}, \frac{3 \pi}{4}, \pi, \frac{5 \pi}{4}, \frac{7 \pi}{4}, 2 \pi$

Example 16:

a) $\theta=\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
b) $\theta=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}$
c) $\theta=0, \frac{\pi}{6}, \frac{5 \pi}{6}, \pi, 2 \pi$

Example 17:

Example 18:
a) $\theta=\frac{2 \pi}{3}, \frac{5 \pi}{6}, \frac{5 \pi}{3}, \frac{11 \pi}{6}$
a) $\theta=\frac{2 \pi}{3}, \frac{10 \pi}{3}$
b) $\theta=\frac{\pi}{12}, \frac{7 \pi}{12}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{17 \pi}{12}, \frac{23 \pi}{12}$
b) $\theta=6 \pi$

Example 19: a) $P(t)=-0.50 \cos \frac{\pi}{14} t+0.50$ b) Approximately 12 days.

Example 20: a) $d(\theta)=4 \tan \theta$
b) See graph. c) $0.4636 \mathrm{rad}\left(\right.$ or 26.6°)

Answer Key

Trigonometry Lesson Six: Trigonometric Identities I
Note: $\mathrm{n} \varepsilon \mathrm{l}$ for all general solutions.
Example 1: a)

$$
\begin{gathered}
\text { Identity } \\
\sec x=\frac{1}{\cos x} \\
\hline
\end{gathered}
$$

b) i) $\sin x=-\frac{1}{2}$
ii) $\tan x=1$
iii) $\tan x=\frac{\sin x}{\cos x}$

Not an Identity

Not an Identity

Identity

iv) $\csc x=\frac{1}{\sin x}$

Identity

v) $\sec x=$ undefined

Not an Identity

Example 2:

a)
$x^{2}+y^{2}=1$
Use basic trigonometry (SOHCAHTOA) to show that $x=\cos \theta$ and $y=\sin \theta$. $(\cos \theta)^{2}+(\sin \theta)^{2}=1$ $\cos ^{2} \theta+\sin ^{2} \theta=1$

d) Divide both sides of $\sin ^{2} x+\cos ^{2} x=1$ by $\sin ^{2} x$ to get $1+\cot ^{2} x=\csc ^{2} x$. Divide both sides of $\sin ^{2} x+\cos ^{2} x=1$ by $\cos ^{2} x$ to get $\tan ^{2} x+1=\sec ^{2} x$.

Example 3:
a) $\sin x \sec x=\tan x, x \neq \frac{\pi}{2}+n \pi$ b) $\cot x \sin x \sec x=1, x \neq \frac{n \pi}{2}$

Example 4:

a) $\frac{\sin x \sec x}{\cot x}=\tan ^{2} x, x \neq \frac{n \pi}{2}$
b) $\sin 2 x \sec 2 x=\tan 2 x, x \neq \frac{\pi}{4}+n \frac{\pi}{2}$

e) Verify that the L.S. = R.S. for each angle.
b) Verify that the L.S. = R.S. for each angle.
f) The graphs of $y=1+\cot ^{2} x$ and $y=\csc ^{2} x$ are the same.

The graphs of $y=\tan ^{2} x+1$ and $y=\sec ^{2} x$ are the same.

Example 5:

$\begin{array}{ll}\text { a) } \sin ^{2} x+\frac{1}{\sec ^{2} x}=1, & \text { b) } \cos x-\cos ^{3} x\end{array}$
$x \neq \frac{\pi}{2}+n \pi$

Answer Key

Example 6:

a) $\cos ^{2} x+\tan ^{2} x \cos ^{2} x=1, \quad x \neq \frac{\pi}{2}+n \pi$

b) $\frac{\sec ^{2} x-1}{1+\tan ^{2} x}=\sin ^{2} x, \quad x \neq \frac{\pi}{2}+n \pi \quad{ }_{-1}^{1}$
c) $\frac{\sin ^{2} x}{1-\cos x}=1+\cos x, \quad x \neq n(2 \pi)$

d) $\left(\frac{\sec ^{2} x}{\csc ^{2} x}\right)\left(\csc ^{2} x-1\right)=1, \quad x \neq \frac{n \pi}{2}$

Example 7:
a) $1+\sec x=\frac{\cos x+1}{\cos x}, \quad x \neq \frac{\pi}{2}+n \pi$

c) $\cot x+\tan x=\sec x \csc x, \quad x \neq \frac{n \pi}{2}$

b) $\tan ^{2} x-\sin ^{2} x=\sin ^{2} x \tan ^{2} x, \quad x \neq \frac{\pi}{2}+n \pi$

d) $\frac{1+\tan x}{1+\cot x}=\tan x, \quad x \neq \frac{n \pi}{2}, \quad x \neq \frac{3 \pi}{4}+n \pi$

Example 8:

a) $\frac{\sin x}{\cos x}+\frac{\cos x}{1+\sin x}=\sec x, \quad x \neq \frac{\pi}{2}+n \pi$

c) $\frac{\cos x}{1+\sin x}+\frac{\cos x}{1-\sin x}=2 \sec x, \quad x \neq \frac{\pi}{2}+n \pi$

b) $\frac{1+\tan ^{2} x}{1+\cot ^{2} x}=\tan ^{2} x, \quad x \neq \frac{n \pi}{2}$

d) $\frac{\cos x}{1-\sin x}=\frac{1+\sin x}{\cos x}, x \neq \frac{\pi}{2}+n \pi$

Answer Key

Example 9: See Video

Example 12:

a) See Video
b) L.S. $=$ R.S. $=\frac{\sqrt{3}}{2}$
c) $x \neq \frac{\pi}{2}+n \pi$
d) $\sin x=\tan x \cos x, \quad x \neq \frac{\pi}{2}+n \pi$

Example 10: See Video Example 11: See Video

Example 13:

a) See Video
b) L.S. $=$ R.S. $=\sqrt{3}$
c) $x \neq n \pi$
d) $\csc x+\cot x=\frac{1+\cos x}{\sin x}, x \neq n \pi$

Example 14:

a) See Video
b) L.S. $=$ R.S. $=2$
c) $x \neq n \pi$
d) $\frac{1}{1-\cos x}+\frac{1}{1+\cos x}=2 \csc ^{2} x, x \neq n \pi$

Example 15:

a) $2 \sin ^{2} x-\cos x-1=0, \quad x=\frac{\pi}{3}, \pi, \frac{5 \pi}{3}$

c) $2 \tan ^{2} x=-3 \sec x, x=\frac{2 \pi}{3}, \frac{4 \pi}{3}$
b) $\sin x=\sec x \cot x, \quad x=\frac{\pi}{2}, \frac{3 \pi}{2}$

d) $\cos ^{2} x=\sin ^{2} x, x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$

Example 16:

a) $3-3 \csc x+\cot ^{2} x=0, \quad x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}$

c) $\sin ^{3} x=\sin x, \quad x=0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 2 \pi$

b) $2 \sin ^{2} x+5 \cos x-4=0, \quad x=\frac{\pi}{3}, \frac{5 \pi}{3}$

Note: All terms from the original equation were collected on the left side before graphing.
d) $2 \sin ^{3} x-2 \cos ^{2} x-\sin x+1=0, \quad x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{3 \pi}{2}, \frac{7 \pi}{4}$

Example 17:
a) $2 \sec ^{2} x-\tan ^{4} x+1=0, x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$

c) $\tan ^{2} x+2 \sec ^{2} x-3=0, x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$

Example 18:

a) $\cos x=\frac{\sqrt{33}}{7}$
b) $\sec A=-\frac{\sqrt{13}}{2}$
c) $\sin \theta=-\frac{\sqrt{42}}{7}$

Example 19: See Video

Answer Key

Trigonometry Lesson Seven: Trigonometric Identities II
Note: $\mathrm{n} \varepsilon \mathrm{l}$ for all general solutions.
Example 1:
a) $\frac{\sqrt{6}+\sqrt{2}}{4}$
b) $\frac{\sqrt{3}}{2}$
c) $\frac{\sqrt{2}+\sqrt{6}}{4}$
d) 0
e) $-\sqrt{3}-2$
f) $-\frac{\sqrt{3}}{3}$

Example 2:
a) $\sin \left(\frac{2 \pi}{3}\right)$
b) $\tan \left(\frac{\pi}{12}\right)$
c) $\cos \left(\frac{\pi}{6}\right)$
b) $\frac{\sqrt{6}+\sqrt{2}}{4}$
C) $2-\sqrt{3}$
d) See Video
a) $\frac{\sqrt{6}+\sqrt{2}}{4}$

Example 4:
a) $\frac{4}{\sqrt{6}+\sqrt{2}}$
b) $\frac{4}{\sqrt{6}+\sqrt{2}}$
c) 1

Example 6:

a) i. $\frac{\sqrt{3}}{2}$ ii. 0 iii. undefined
b) (answers may vary)
c) (answers may vary)
i. $\quad \sin (8 x)=2 \sin (4 x) \cos (4 x)$
i. $\cos \left(60^{\circ}\right)$
ii. $\quad \cos (4 x)=\cos ^{2}(2 x)-\sin ^{2}(2 x)$
ii. $\frac{1}{2} \sin \left(\frac{\pi}{4}\right)$
iii. $\quad \sin x=2 \sin \left(\frac{1}{2} x\right) \cos \left(\frac{1}{2} x\right)$
iii. $\cos (x)$
iv. $\cos \left(\frac{1}{2} x\right)=1-2 \sin ^{2}\left(\frac{1}{4} x\right)$
iv. $\tan \left(\frac{1}{4} x\right)$

Examples 7-13: Proofs. See Video.

Example 14:

a) $x=0, \pi, 2 \pi$
a) $x=\frac{\pi}{6}, \frac{5 \pi}{6}$
b) $x=\frac{3 \pi}{4}, \frac{5 \pi}{4}$
b) $x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$
C) $x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
c) $x=\frac{\pi}{2}$
d) $x=\frac{\pi}{3}, \frac{5 \pi}{3}$

Example 16:

a) $x=0, \frac{2 \pi}{3}, \frac{4 \pi}{3}, 2 \pi$
a) $x=\frac{\pi}{12}, \frac{5 \pi}{12}, \frac{13 \pi}{12}, \frac{17 \pi}{12}$
b) $x=\frac{\pi}{3}, \frac{5 \pi}{3}$
b) $x=0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 2 \pi$
C) $x=0, \pi, 2 \pi$
c) $x=\frac{3 \pi}{2}$
d) $x=\frac{\pi}{6}, \frac{5 \pi}{6}$
d) $x=\frac{\pi}{2}, \pi, \frac{3 \pi}{2}$

Example 18: 57°

Example 19: 92.9

Example 5: See Video

Example 3:

Example 20:

a) $\quad d(\theta)=\frac{1296}{9.8} \sin 2 \theta$
b)

c) $\theta=24.6^{\circ}$ and $\theta=65.4^{\circ}$

Example 21:

a) $A(\theta)=4900 \sin (2 \theta)$
b)

c) i. $70 \sqrt{2} \mathrm{~m}$
ii. $35 \sqrt{2} \mathrm{~m}$
iii. $35(2-\sqrt{2}) \mathrm{m}$

Example 22:
a) i.

ii. The waves experience constructive interference.
iii. The new sound will be louder than either original sound.
b) i.

ii. The waves experience destructive interference. iii. The new sound will be quieter than either original sound.
c) All of the terms subtract out leaving $y=0$, A flat line indicating no wave activity.

Example 23: See Video.
Example 24: See Video.

Mathematics 30-1

Trigonometry I

The Unit Circle

$\theta=\frac{a}{r}$

$\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
$\sin (2 A)=2 \sin A \cos A$

$$
P\left(\frac{3 \pi}{2}\right)=(0,-1)
$$

Note: The unit circle is NOT included on the official formula sheet.
$\cos (2 A)=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A$
$\tan (2 A)=\frac{2 \tan A}{1-\tan ^{2} A}$

Transformations \& Operations

$y=a f[b(x-h)]+k$
Polynomial, Radical \& Rational Functions
$x:\left[x_{\min }, x_{\text {max }}, x_{s c t}\right]$
$y:\left[y_{\text {min }}, y_{\text {max }}, y_{s c t}\right]$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Exponential and Logarithmic Functions

$\log _{b}(M \times N)=\log _{b} M+\log _{b} N$
$\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N$
$\log _{b}\left(M^{n}\right)=n \log _{b} M$
$\log _{b} c=\frac{\log _{a} c}{\log _{a} b}$
$y=a b^{\frac{t}{p}}$

Permutations \&
Combinations
$n!=n(n-1)(n-2) \ldots 3 \times 2 \times 1$
${ }_{n} P_{r}=\frac{n!}{(n-r)!}$
${ }_{n} C_{r}=\binom{n}{r}=\frac{n!}{(n-r)!r!}$
$t_{k+1}={ }_{n} C_{k} x^{n-k} y^{k}$

