## **Science 10 Physics**

### 2.1 Practice Assignment

Rounding, Significant Digits, Scientific Notation, Metric Conversion and Dimensional Analysis

1.16

# A) Rounding – round to number indicated

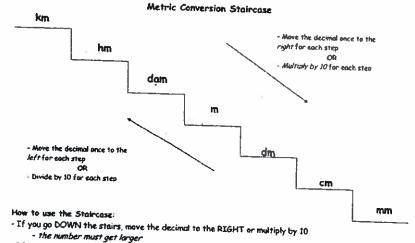
| Value  | Round to nearest<br>whole number, tenth<br>or hundredth | Rounded Answer |  |
|--------|---------------------------------------------------------|----------------|--|
| 0.1495 | Nearest hundredth                                       | 0.150          |  |
| 29.95  | Nearest tenth                                           | 30.0           |  |
| 139.49 | (Nearest whole number                                   | 139            |  |
| 80.46  | Nearest tenth                                           | 80             |  |
| 5.89   | Nearest whole number                                    | 6              |  |
| 3.047  | Nearest hundredth                                       | 3.0            |  |

# B) Significant Digits - Count significant digits.

| Number                | Number of Significant Digits |
|-----------------------|------------------------------|
| 12.42                 | 4                            |
| 0.01407               | 4                            |
| 10.0                  | 3                            |
| 54.60                 | 4                            |
| 3.04                  | 3                            |
| $3.0 \times 10^{3}$   | 2                            |
| 5.78×10 <sup>-6</sup> | 3                            |

#### C) Scientific Notation - Convert the following to Scientific Notation

| Value    | # of Significant Digits | Scientific Notation    |  |
|----------|-------------------------|------------------------|--|
| 0.00706  | 2                       | 7.1 × 10-3             |  |
| 4000000  | 3                       | 4.00 × 106             |  |
| 43.059   | 3                       | 4.31 × 10 <sup>4</sup> |  |
| 0.00349  | 1                       | 3 X 10-3               |  |
| 0.000062 | 2                       | 6.0x10-6               |  |
| 5400000  | 2                       | 5.4 x 106              |  |
| 6.7      | 1                       | 7 x 10°                |  |


#### D) Metric Conversion - Complete the following conversions.



b) 15 m = 0.015 km



d) 35 mm = 0.035 m



- If you go UP the stairs, move the decimal to the LEFT or divide by 10
  - the number must get smaller
    - "You can substitute any metric measure in for metre (e.g., litre, gram etc)

# E) Dimensional Analysis - Complete the following conversions. Show all the steps. (ONLY completed by students planning to take Physics 20)

a) 1 year → minutes

### 2.2 Scalars and Vectors

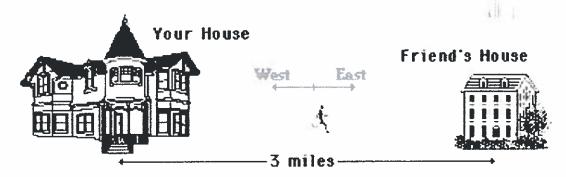
1. Most of the quantities used to describe motion can be categorized as either vectors or scalars. A vector is a quantity that is fully described by both magnitude and direction. A scalar is a quantity that is fully described by magnitude alone. Categorize the following quantities by placing them under one of the two column headings.

displacement, distance, speed, velocity, acceleration

| Vectors       | Scalars  |
|---------------|----------|
| displacement. | distance |
| Velocity      | Speed    |
| acceleration  |          |
|               |          |

| 2. a. A quantity that is ignorant of direction is referred to as a | scalar |
|--------------------------------------------------------------------|--------|
|--------------------------------------------------------------------|--------|

3. True or False: An object can be moving for 10 seconds and still have zero displacement.

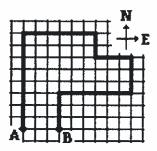

4. If the above statement is true, then describe an example of such a motion. If the above statement is false, then explain why it is false.

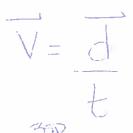
Connar McDavid is trying to beat the record for fastest stater by doing one tap of the rink. Start & finish at same location.

5. Suppose that you run along three different paths from location A to location B. Along which path(s) would your distance traveled be different than your displacement? Path 143

Path 2

6. You run from your house to a friend's house that is 3 miles away. You then walk home.





- b. What was the displacement for the entire trip?

returned back where you started

- 7. Observe the diagram below. A person starts at A, walks along the bold path and finishes at B. Each square is 1 km along its edge. Use the diagram in answering the next two questions.
  - a. This person walks a distance of \_\_\_\_ km.







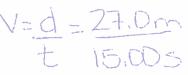
# Science 10 Physics

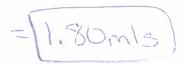
# 2.3 Velocity: Uniform Motion

1. A skateboarder travels 50.0 m in 12.0 s. What is the average speed of the skateboarder?

2. A baseball player throws a ball a distance of 45.0 m at a speed of 30.0 m/s. How long is the ball in flight?

H=7


3. An airplane flies at a speed of 990 km/h for 4.10 hours. How far does the airplane travel?


$$d = t \cdot v = (4.10h)(990km/r$$
  
=  $\frac{4059 \, \text{km}}{-1400 \, \text{m}^3}$ 

4. A bird is flying 6.00 km/h in a straight line at a constant rate. How long, in hours, will the bird take to travel 30.0 km?

5. A person walks 15.0 m in 5.00 s and then walks 12.0 m in 10.00 s. What is the average speed of the person?

d=15.0m+12.0m=27.0m = 5,005+10,00s=15,00s





#### 2.4 V<sub>f</sub> Formulas

1. A ball traveling west at 10 m/s increases in speed to 25 m/s in 8.0 s. Find the acceleration of the ball.

acceleration of the ball.  $V_1 = 10 \text{m/s}[W]$   $C = V_1 + V_2 + 25 \text{m/s}[W] - 10 \text{m/s}[W]$  C = 25 m/s[W] C = 25 m/s[W] C = 3.0 s C = 1.9 m/s[W]

2. A bowling ball traveling at 8.0 m/s [N] is accelerated by 0.50 m/s<sup>2</sup> [N] for 5.0 s. Find the final velocity of the bowling ball.

3. A car traveling 14 m/5 [E] comes to a stop in 12 s. Find the acceleration of the car.

 $\nabla i = |H_{mis}[E] \quad \vec{a} = \nabla p - \nabla i = 0 \text{ mis-} |H_{mis}[E] \\
\nabla f = 0 \text{ mis} \quad E \qquad 125$  E = 125  $\vec{a} = -1.2 \text{ mis}^2 [E]$ 

4. A marble initially travels south at 12.0 m/s. It is accelerated at -2.25 m/s<sup>2</sup> [S] for 3.50

s. Find the velocity of the marble at that moment.

 $V_1 = 12.0 \text{m/s}[5]$   $V_2 = ativ_1 = (-2.25 \text{m/s}[5])(3.50 \text{s}) + (12.0 \text{m/s}[5])$  a = -2.25 m/s[5]  $V_2 = 4.13 \text{m/s}[5]$  t = 3.50 s $v_4 = 3$ 

5. A ball is thrown upwards at 20 m/s. How much time will have passed before the ball stops rising? Remember that acceleration due to gravity is a -9.81 m/s<sup>2</sup>.

 $V_i = 20m15$   $Q = V_F - V_i$  $V_f = 0m15$   $V_f = 0m15$   $V_f = 0m15 - 20m15$   $V_f = 0m15$   $V_f = 0m$ 

7. Clayton is racing for a puck. He starts from a dead stop at the boards and heads east. He allows his skating rate to increase by 6.0 m/s² [E] for 2.5 s. What is his final velocity?

velocity? 
$$V_{F}=\overline{a}t+V_{i}=(6,0mls^{2}[E])(2.5s)+(0mls)$$

$$\overline{a}=6.0mls^{2}[E]$$

$$t=2.5s$$

$$V_{F}=?$$

8. Cassie drives her golf cart 15 km/h [E]. There is a massive speed bump coming so Cassie slows the cart to 5.0 km/h. If this takes her find the acceleration of the cart in m/s.

$$\nabla i = 15 \text{ km/h[E]}$$
 $\overline{a} = \nabla i = 5.0 \text{ km/h[E]} - 15 \text{ km/h[E]}$ 
 $\nabla i = 5.0 \text{ km/h[E]}$ 

9. Andy kicks a soccer ball north towards the net. It leaves his foot at 18 m/s [N] and strikes the goal post 2.5 s later. If the speed of the ball was 10 m/s [N] when it struck the goal post, find the acceleration of the ball.

$$\overline{C} = 18 \text{mis[N]}$$
 $\overline{C} = V_{P} - \overline{V}_{1} = 10 \text{mis[N]} - 18 \text{mis[N]}$ 
 $\overline{C} = 2.58$ 
 $\overline{C} = 10 \text{mis[N]}$ 
 $\overline{C} = 7$ 

$$\overline{C} = 7$$

$$\overline{C} = 7$$

$$\overline{C} = 3.2 \text{mis[N]}$$

# 2.5 Potential Energy

1. Calculate the potential energy that a 55.0 kg diver has standing on a 10.0 m platform.

Ep = ?

$$m = 55.0 \text{kg}$$

Ep = mgh

Ep =  $(55.0 \text{kg})(9.81 \text{ m/s}^2)(10.0 \text{ m})$ 
 $g = 9.81 \text{ m/s}^2$ 
 $h = 10.0 \text{ m}$ 

2. Determine the mass of a water balloon that is dropped from a height of 35 m with a potential energy of 515 J.

$$m = ?$$
 $Ep = 515J$ 
 $g = 9.81 m/s^2$ 
 $h = 35 m$ 
 $m = Ep$ 
 $m = 515J$ 
 $m = 1.5 kg$ 
 $m = 1.5 kg$ 

3. A 1.00 x 10<sup>4</sup> kg airplane lands, descending a vertical distance of 10.0 km while must change travelling 100.0 km measured along the ground. What is the plane's loss of potential energy?

Ep = ? Ep = mgh Ep = 
$$(1.00 \times 10^{4} \text{kg})(9.81 \text{ m/s}^{2})(10000 \text{ m})$$
  
In =  $1.00 \times 10^{4} \text{kg}$   
 $g = 9.81 \times 10^{8} \text{ J}$   
 $h = 10000 \text{ m}$ 

4. A coconut falls out of a tree 12.0 m above the ground and hits a bystander 3.00 m tall on the top of the head. If the mass of the coconut is 2.00 kg, calculate the potential g=૧.જામાં energy of the coconut relative to the ground at each of the following sites: Ep=mgh

(b) when it hits the bystander on the head

(b) when it hits the bystander on the head

$$m = 3.00mg$$
 $Ep = (2.00kg) (9.8lm/s^2)(3.00m)$ 
 $Ep = 58-9J$ 

(c) when it lands on the ground h = 0 m

5. Calculate the potential energy of a 5.00 kg object sitting on a 3.00 metre high ledge.

Ep = ?

$$m = 6.00 \text{kg}$$

Ep =  $mgh$ 

Ep =  $(5.00 \text{kg})(9.8 \text{lm/s}^2)(3.00 \text{ m})$ 
 $h = 3.00 \text{m}$ 

Ep =  $14777$ 

6. A 10.0 kg rock is at the top of a 20.0 m tall hill. How much potential energy does it

Ep = mgh  

$$m - 10.0 \text{kg}$$
 Ep =  $(10.0 \text{kg})(9.8 \text{lm/s}^2)(20.0 \text{m})$   
 $h = 20.0 \text{m}$  Ep =  $1.96 \times 103 \text{J}$ 

## 2.6 Kinetic Energy

250

1. Calculate the kinetic energy of a 0.45-kilogram golf ball travelling at:

 $E_{K} = \frac{1}{2}mv^{2} = (\frac{1}{2})(0.45 \text{kg})(40.0 \text{m/s})^{2} = 360 \text{J} = [3.6 \times 10^{2} \text{J}]$ c) 60.0 m/s.

2. A 50.0 kg bicyclist on a 10.0 kg bicycle speeds up from 5.00 m/s to 10.0 m/s.

Ex= = 1 (60.0kg)(5,00mls)2= 750丁

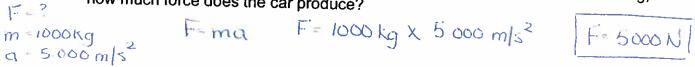
b. What was the total kinetic energy after accelerating?

Ex= \frac{1}{2}mv^2 = (\frac{1}{2})(60.0kg)(10.0m15)^2 = 3000 = [3.00×10] ]

3. A 4.00 kg rock is rolling 10.0 m/s. Find it's kinetic energy.

 $E_{k} = \frac{1}{2}mv^{2} = (\frac{1}{2})(4.00kg)(10.0mls)^{2} = (2005)$ 

4. An 8.0 kg cat is running 4.0 m/s. How much kinetic energy does it have?


Ex= = = (=)(8.0kg X 4.0m/s) = [64]

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | W= Fd                                  | W= mad                | F=ma                | F       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------|---------------------|---------|--|
| 2.8 Force and Wo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ork \frac{\text{W}}{F} = \frac{1}{F} d |                       | F=ma                | f = ma  |  |
| 1. Calculate ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ne work done by a                      | 47 N force pushin     | g a pencil 0.26 m.  |         |  |
| W=?<br>F=47N<br>d=0.26m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | W= Fol                                 | W= 47                 | N x 0.26m           | W=12J   |  |
| 2. How much work is it to lift a 20 kg sack of potatoes vertically 6.5 m?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                       |                     |         |  |
| $W = \frac{2}{3}$<br>$M = \frac{20}{3}$<br>$M = \frac{20}{3}$<br>$M = \frac{2}{3}$<br>$M = \frac{2}{3}$<br>M | W = mad                                | W=(20kg)(9            | 1.81m/s2)(6.5,      | n)      |  |
| W=?<br>F=24550 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | W=Fd                                   | W= 2'                 | 4550N X 22          | 2.00 nr |  |
| d= 22.00m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | W= 5                  | 401 X 105 J         |         |  |
| <ol> <li>A weight lifted did the weight</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | er does 420 J of we                    | ork to lift a barbell | a height of 0.35 m. | 1       |  |
| W=4901<br>W=4901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F=W F                                  | = 4205<br>0.35m       | F=12 x 10           | 5 N     |  |

5. A farmer exerts a force of 12.00 N on a wheelbarrow. When the farmer has used 7198 J of energy how far has he pushed the wheelbarrow?

$$d = \frac{12.00N}{F}$$
  $d = \frac{W}{F}$   $d = \frac{7198J}{12.00N}$   $d = \frac{599.8m}{1}$ 

6. Sally has a car that accelerates at 5.000 m/s<sup>2</sup>. If the car has a mass of 1000 kg, how much force does the car produce?



7. What is the mass of a truck if it produces a force of 14 000 N while accelerating at a rate of 5.000 m/s<sup>2</sup>?

$$m = \frac{1}{2}$$
 $m = \frac{1}{2}$ 
 $m = \frac{1}{2}$ 

8. What is the acceleration of softball if it has a mass of 0.50 kg and hits the catcher's glove with a force of 25 N?

$$a = ?$$
 $F = 25N$ 
 $m = 0.50 \text{ kg}$ 
 $a = \frac{F}{m}$ 
 $a = \frac{25N}{0.50 \text{ kg}}$ 
 $a = \frac{50m}{s^2}$