Unit 3 Notes Package.notebook

Oct 18-8:30 AM

Characteristics:
Degree:

Leading Coefficient:

Constant Term:

X-Intercepts:

End Behaviour:

Investigate the End-Behaviour of Even Functions: x^{2} and x^{4}

$f(x)=x^{4}$

Oct 18-8:42 AM

Unit 3 Notes Package.notebook

3.2 Synthetic Division and The Remainder Theorem

Recall: Long Division with Numbers

Terminology:
Quotient and Remainder
Divisor \quad Dividend
$f(x)=$ Dividend
$g(x)=$ Divisor
$q(x)=$ Quotient and Remainder
then,
$f(x)=g(x) q(x)=$ Divisor (Quotient + [Remainder / Divisor])

Unit 3 Notes Package.notebook

Now, long division with polynomials:

Long division is a great way to divide polynomials. However, there is a simpler way that removes all the variables and just works with the coefficients; Synthetic Division.

Synthetic Division:

Unit 3 Notes Package.notebook

What does this tell us about polynomials?

In Math 20-1: $\quad f(x)=x^{2}+7 x+6$ factors to $(x+6)(x+1)$ so x-int's are $-6,-1$.
In Math 30-1: We use synthetic division to see if there is a remainder. If there is a remainder, the divisor is not a factor of the dividend.

The Remainder Theorem:
If a polynomial, $f(x)$, is divided by $(x-a)$, the remainder is the constant $f(a)$, and dividend $=$ quotient x divisor + remainder

$$
f(x)=q(x) \cdot(x-a)+f(a)
$$

where $q(x)$ is a polynomials with degree one less that the degree of $f(x)$.

So with our quadratic example:

Unit 3 Notes Package.notebook

Ex.) Divide $2 x^{3}+3 x^{2}-4 x+15$ by $(x+3)$.

Ex.) Divide $5 x^{4}-3 x^{2}+2 x-7$ by $(x+2)$.

Ex.) Use the remainder theorem to find the remainder when $P(x)=x^{3}-10 x+6$ is divided by $\mathrm{x}-4$.

Ex.) Use synthetic division to divide $4 x^{5}-3 x^{3}+7 x^{2}-6$ by $(x+1)$.

Ex.) When $P(x)=x^{3}+4 x^{2}-x+k$ is divided by $(x-1)$, the remainder is 3 . What is the value of ' k '?

3.3 The Factor Theorem

The Factor Theorem states that if $f(a)=0$ for a polynomial, then $(x-a)$ is a factor of the polynomial $f(x)$.

Ex.) Fully factor the following polynomials:
a) $P(x)=x^{3}-x^{2}-5 x+2$

Unit 3 Notes Package.notebook

b) $P(x)=x^{3}-x^{2}-4 x+4$

c) $P(x)=2 x^{3}-5 x^{2}-4 x+3$

Unit 3 Notes Package.notebook

d) $P(x)=x^{4}-5 x^{3}+2 x^{2}+20 x-24$

Pg. 133 \# 1, 3, 5, 6, 7, 11, 12.

Oct 19-1:04 PM

3.4 Graphing Polynomials

$$
P(x)=a(x+b)(x-c)(x-d)(x-e)
$$

Degree: 4
a<0

Unit 3 Notes Package.notebook

Degree: 3
a > 0

Multiplicity: - the power of the factor
Even Power: the graph is tangent to the x-axis
Odd Power: the graph cuts the x-axis

Ex.) Sketch and find degree, multiplicity, and the roots of the following:
a) $P(x)=a(x+5)(x-3)^{2}$
b) $P(x)=a(x+3)^{3}(x-4)^{2}$

Ex.) Given $P(x)=3(x-2)(x+1)(x-4)^{2}$, sketch the graph.

Ex.) Sketch $P(x)=-2(x+3)^{2}(x-5)^{3}$.

Pg. 147 \# 2, 4, 5, 7ac, 10acd. Worksheet.

3.5 Determining the Equation of a Polynomial

$$
P(x)=a(x-b)(x-c)(x-d) \ldots
$$

Here's the information you may be given in a question or on a graph in order to write the equation:

- roots (x-int, related to factors)
- multiplicities of roots
- degree of the equation
- a point on the graph (x, y)

Unit 3 Notes Package.notebook

Ex.) A polynomial function has zeros at -3 and 4 and passes through the point $(1,15)$. The multiplicity of $(-3,0)$ is 1 and the multiplicity of $(4,0)$ is 2 . Find $P(x)$.

Ex.) Determine the equations for the following:
a) Roots at $x=3, x=4, x=-7$ and it passes through $(2,54)$.
b) Roots at $x=4$ multiplicity of $3, x=1$ multiplicity of 2 , and passes through (0,32).

Unit 3 Notes Package.notebook

c) Roots at $x=0,-4,2$ (mult. of 2) and passes through ($-2,128$).

Unit 3 Notes Package.notebook

Ex.) For each of the following, describe the transformations and state domain, range, x int, and y-int.
a)
b)

c)
d)
e)

Unit 3 Notes Package.notebook

f)
g)
h)

Ex.) Given the graph, determine the radical function.
a)
b)

Unit 3 Notes Package.notebook

c)
d)

Unit 3 Notes Package.notebook

Graph $f(x)=3-2 x$ and $\sqrt{f(x)}$

Domain:		
Range:		
X-int:		
Y-int:		
Invariant		

Points:

Unit 3 Notes Package.notebook

Graph $f(x)=x^{2}+5$ and $\sqrt{f(x)}$

Domain:		
Range:		
X-int:		
Y-int:		
Invariant		

Points:

Oct 19-2:01 PM

Graph $f(x)=x^{2}-x-6$ and $\sqrt{f(x)}$

Domain:		
Range:		
X-int:		
Y-int:		
Invariant		

Points:

Unit 3 Notes Package.notebook

3.8 Rational Functions

Graph $f(x)=x$ and the reciprocal:

Domain:		
Range:		
X-int:		
Y-int:		
Invariant		
Points:		
Asymptotes:		

Vertical Asymptote - make the denominator equal to zero
Horizontal Asymptote - divide the coefficients of the highest degree terms

Oct 19-2:04 PM

Unit 3 Notes Package.notebook

Oct 19-2:34 PM

Unit 3 Notes Package.notebook

Graph $f(x)=\frac{2 x^{2}-5 x-3}{x^{2}-1}$

Domain:	
Range:	
X-int:	
Y-int:	
Asymptotes:	

* It is possible to cross a horizontal asymptote on occasion. Vertical asymptotes are not crossed.

Nov 15-9:08 AM

Other possible graphs(but not all possibilities):

Unit 3 Notes Package.notebook

Ex.) a. List the transformations required to transform the mother function $y=1$ to
$y=\frac{5}{x+2}-6$.
b. Using a common denominator, rewrite the function as one fraction.

Pg. 442 \# 1, 3, 4, 5, 8.

3.9 Analyzing Rational Functions

Point of Discontinuity:

Ex.) Determine the asymptotes, the x, y-intercepts, and the point of discontinuity for the following:
a) $y=\frac{x^{2}-5 x+6}{x-3}$
b) $y=\frac{x^{2}-2 x}{4-2 x}$

c) $y=\frac{x^{2}+7 x+6}{x^{2}+8 x+12}$
d) $y=2 x^{2}-15 x+7$

$$
x-7
$$

Unit 3 Notes Package.notebook

Ex.) Determine the equation in factored form of the rational function with HA $y=2, \mathrm{VA}$ $x=0$, and point of discontinuity $(1,5)$.

