
4.1 Discovering Trigonometry

https://betterexplained.com/articles/intuitive-guide-to-angles-degrees-andradians/

Nov 14-8:04 AM

Converting Between Degrees and Radians:

Conversion Factor:

Ex.) Convert the following:
$270^{\circ} \quad \frac{3 \pi}{2}$
45°
$\frac{5 \pi}{4}$
210°
$\frac{11 \pi}{6}$
540°

Unit 4 Notes Package.notebook

Terminology:
Reference Angles:

Principle Angles:

Co-terminal Angles:

Ex.) Determine one positive and one negative co-terminal angle:
a) $\theta=120^{\circ}$
b) $\theta=\frac{5 \pi}{4}$

Unit 4 Notes Package.notebook

Ex.) Given the following angles, determine the reference angle:
a) 315°
b) 470°
c) $\frac{-5 \pi}{6}$
d) $\frac{5 \pi}{3}$

Arc Length:

$$
\theta=\frac{a}{r}
$$

Ex.) A circle with radius 7 cm , has a central angle of 160° that subtends an arc. What is the length of the arc to the nearest tenth of a centimetre?

Unit 4 Notes Package.notebook

Ex.) An angle of 1.8 subtends an arc 4.5 mm . What is the radius of the circle?

Ex.) A circle with an arc length of 25 m has a radius of 11 m . What is the central angle, to the nearest degree?

Pg. 175 \# 2, 4, 6, 7, 8, 9, 12ab, 13, 14a, 16.

Nov 14-9:23 AM

4.2 The Unit Circle

Special Triangles:

Nov 14-9:29 AM

Unit 4 Notes Package.notebook

Using the Unit Circle:
a) $\tan 45^{\circ}$
b) $\tan 240^{\circ}$
c) $\tan \pi$
d) $\tan (\pi / 2)$

Nov 14-9:31 AM

Ex.) Do the following points exist on the Unit Circle?

Unit 4 Notes Package.notebook

Ex.) The point $P(5 / 6, y)$ is on the unit circle. What is/are the value(s) of ' y '?

Pg. 186 \# 2, 3, 4, 5, 10.
Nov 14-9:33 AM

4.3 Trigonometric Ratios

Recall: Good ol' SOH CAH TOA. This gave us the three primary trigonometric ratios. However, they all have companions:

Companions to the primary trig ratios are reciprocal trig ratios:

Unit 4 Notes Package.notebook

Here's what we get on the formula sheet:

$$
\begin{array}{ll}
\tan \theta=\frac{\sin \theta}{\cos \theta} & \cot \theta=\frac{\cos \theta}{\sin \theta} \\
\csc \theta=\frac{1}{\sin \theta} & \sec \theta=\frac{1}{\cos \theta} \\
\cot \theta=\frac{1}{\tan \theta} &
\end{array}
$$

Ex.) Determine the 6 trig ratios for the point $P(3,4)$ on the terminal arm of an angle in standard position.

Unit 4 Notes Package.notebook

Ex.) Determine the 6 trig ratios for the point $P(-3,2)$ on the terminal arm of an angle in standard position.

Ex.) If $\cos \theta=2 / 5$ in quadrant IV, determine the other 5 trigonometric ratios.

Unit 4 Notes Package.notebook

Ex.) If $\cos \theta=3 / 5$ and $\tan \theta<0$, determine the reference angle and the angle in standard position.

Ex.) Given $\sec \theta=2 / \sqrt{3}$, determine $\theta:-2 \pi<\theta<2 \pi$.

Pg. 201 \# 1, 3, 8, 9, 10, 12.

Unit 4 Notes Package.notebook

4.4 Solving Linear Trig Equations

Grade 10: $\sin \theta=0.3216$

Grade 11: CAST

Grade 12: All solutions $0 \leq \theta \leq 360^{\circ}$ or $0 \leq \theta \leq 2 \pi$

Ex.) Solve the following equations $0 \leq \theta \leq 360^{\circ}$ and $0 \leq \theta \leq 2 \pi$:
a) $2 \sin \theta=-1$
b) $\sin \theta=\sqrt{ } 3-\sin \theta$

Unit 4 Notes Package.notebook

c) $5 \cos \theta+2=1+3 \cos \theta$
d) $3 \csc \theta-6=0$

Pg. 211 \# 1, 3, 5.
Nov 14-9:54 AM

4.5 Solving Quadratic Trig Equations

Factor using the substitution method:

Ex.) Solve the following for $0 \leq \theta \leq 360^{\circ}$ and $0 \leq \theta \leq 2 \pi$.
a)

Unit 4 Notes Package.notebook

b)

Nov 14-10:00 AM

c)

Unit 4 Notes Package.notebook

d)

Nov 14-10:00 AM $O<X^{\prime} \lll$

e)

Unit 4 Notes Package.notebook

4.6 Trigonometric Graphs

Terminology:
Periodic Function - a function that repeats itself after a certain amount of time
Period - time to complete one cycle
Sinusoidal Functions - wavy functions like Sine or Cosine
Median - middle of the graph
Amplitude - distance form the median to the max. or min. value

Nov 14-10:41 AM

Unit 4 Notes Package.notebook

Nov 14-10:48 AM

Nov 14-10:48 AM

Unit 4 Notes Package.notebook

Transformations of Sinusoidal Graphs:

$$
\begin{aligned}
& y=a \sin [b(x-c)]+d \\
& y=a \cos [b(x-c)]+d
\end{aligned}
$$

Ex.) Compare the following and state the characteristics:
a) $\sin x$ and $2 \sin x$
b) $\sin x$ and $-3 \sin x$

c) $\cos x$ and $\cos (x)+2$

d) $\cos x$ and $\cos (x)-2$

Nov 14-10:55 AM

e) $\sin x$ and $\sin \left(x-90^{\circ}\right)$

f) $\cos x$ and $\cos (2 x)$

4.7 Writing Sinusoidal Equations

Determine a, b, c, d from the graph and sub into the equation on the formula sheet.

$$
\text { Recall: } y=\operatorname{asin}[b(x-c)]+d \quad \& \quad y=\operatorname{acos}[b(x-c)]+d
$$

a:
b:
c:
d:

Nov 14-10:58 AM

Ex.) Determine the characteristics of the following sinusoidal functions.

Unit 4 Notes Package.notebook

Ex.) Consider the equation $y=4 \cos \left(x-\frac{\pi}{3}\right)+2$. Determine the:
a) Amplitude
e) Y -intercept
b) Period
f) Domain
c) Phase shift
g) Range
d) Median
h) Sketch

Unit 4 Notes Package.notebook

Ex.) What is the equation of the cosine function below?

Dec 6-11:15 AM

Ex.) What is the equation of the sine functions below?

Unit 4 Notes Package.notebook

Ex.) What is the equation of the sine function below?

Dec 6-11:19 AM

Ex.) Determine the equation of the graph in the form $y=A \cos B(x-C)+D$.

Unit 4 Notes Package.notebook

Ex.) Determine the equations of the graph in the following forms;

$$
y=A \cos B(x-C)+D \quad y=A \sin B(x-C)+D
$$

Trig Applications:
Ex.) By using the averages of high and low tide levels, the depth of water, $d(t)$, in metres, in a seaport can be approximated by the sine function

$$
d(t)=2.5 \sin 0.164 \pi(t-1.5)+13.4
$$

a) Graph the function on your calculator.
b) What is the period of the tide?
c) A cruise ship needs a depth of at least 12 m of water to dock safely. For how many hours per tide cycle can the ship dock safely?

Unit 4 Notes Package.notebook

Ex.) A Ferris wheel has a radius of 20 m . It rotates once every 40 s . Passengers get on at a point S, which is 1 m above ground level. Suppose you get on at S and the wheel starts to rotate.
a) Graph how your height above the ground varies during the first two cycles.
b) Write an equation that expresses your height as a function of the elapsed time.
c) Estimate your height above the ground after 45 s .
d) Estimate one of the times when your height is 35 m above the ground.

Ex.) A Ferris wheel has a diameter of 14 m . It makes 2 cycles in 60 s . If you get on the Ferris wheel at the lowest point, 1 m above the ground, determine
a) an equation that represents the motion of the Ferris wheel.
b) the height at 40 s .
c) the first time that you will reach a height of 15 m on the Ferris wheel.

Unit 4 Notes Package.notebook

Ex.) According to statistical data from Environment Canada, the lowest normal daily temperature is $-14^{\circ} \mathrm{C}$ on January 26 and the greatest normal daily maximum temperature in Edmonton is $23^{\circ} \mathrm{C}$ on July 26, day 208.
a) Write a sine and cosine function to approximate the temperature in Edmonton.
b) Use your equation to predict the maximum temperature on November 10, day 324.
c) What is the first day of the year where the maximum temperature is zero?

4.8 Solving Trig Equations with General Solutions

When giving a general solution for a trig equations, it means that there are infinite solutions as you can rotate around an infinite angle.

Ex.) For the following trig equations, give (a) the solution for $\left[0^{\circ}, 360^{\circ}\right.$) and (b) the general solution.
a) $2 \cos \theta=\sqrt{ } 2$

Unit 4 Notes Package.notebook

b) $2 \cos ^{2} x-1=0$

c) $16=6 \cos [(\pi / 6) x]+14$

Unit 4 Notes Package.notebook

d) $10=6 \sin [(\pi / 4) \mathrm{x}]+8$

4.9 Trig Identities

When working with Trig Identities, you can prove them three ways:

1) Graphically: $L S=R S\left(y_{1}=y_{2}\right)$ and see if the graphs overlap.
2) Numerically: Substitute an angle into the equations and check to see if LS = RS.
3) Algebraically: Simplify the identities using the formula sheet.

* This will be presented in a "Two-Column Proof"/"T-Form Proof" arrangement. You never cross the equal sign.
* Most problems can be solved by changing to sin and cosine.

Unit 4 Notes Package.notebook

Common Misconception:

$$
\sin x^{2} \text { vs. } \sin ^{2} x
$$

Helpful Understandings:

Ex.) Prove the following identities numerically:
a) $\sin \theta \cot \theta=\cos \theta$, when $\theta=30^{\circ}$
b) $\tan ^{2} x=\sec ^{2} x-1$, when $x=\pi / 7$

Ex.) Prove the following identities algebraically:
a) $\frac{\sin x}{\tan x}=\cos x, \quad \tan x \neq 0$
b) $\frac{1}{\cos x}-\cos x=\sin x \tan x$

c) $\frac{\sec ^{2} x}{\sec ^{2} x-1}=\csc ^{2} x$ $\overline{\sec ^{2} x-1}$
d) $\sin ^{3} x+\cos ^{2} x \sin x=\frac{1}{\csc x}$

Unit 4 Notes Package.notebook

e) $(\tan x-1)^{2}=\sec ^{2} x-2 \tan x$

f) $(\sin x+\cos x)^{2}+(\sin x-\cos x)^{2}=2$

*Trick for fractions with binomial denominators...multiply by the conjugate.
g) $\frac{1+\cos \theta}{\sin \theta}=\frac{\sin \theta}{1-\cos \theta}$

4.10 Sum and Difference Identities
$\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
$\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$
$\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
$\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$
$\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
$\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}$

Unit 4 Notes Package.notebook

Ex.) Determine the exact value of angles that are not multiples of the standard reference angles (ie. 0, 30, 45, 60, 90, etc.).
a) $\cos \left(105^{\circ}\right)$
b) $\sin 15^{\circ}$

c) $\tan 15^{\circ}$

Unit 4 Notes Package.notebook

Ex.) Simplify the following to a single trig function:
a) $\sin 35^{\circ} \cos 40^{\circ}+\cos 35^{\circ} \sin 40^{\circ}$
b) $\tan 10^{\circ}+\tan 35^{\circ}$
$1-\tan 10^{\circ} \tan 35^{\circ}$

Ex.) Prove the following identity:

$$
\sin (\pi / 2+M)=\cos M
$$

Pg. 306 \# 1abd, 2bd, 7, 8 , 10, 11c, 17, 19, 20ab.

Unit 4 Notes Package.notebook

4.11 Double Angle Identities

$$
\begin{aligned}
& \sin (2 \alpha)=2 \sin \alpha \cos \alpha \\
& \cos (2 \alpha)=\cos ^{2} \alpha-\sin ^{2} \alpha \\
& \cos (2 \alpha)=2 \cos ^{2} \alpha-1 \\
& \cos (2 \alpha)=1-2 \sin ^{2} \alpha \\
& \tan (2 \alpha)=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}
\end{aligned}
$$

Nov 14-1:40 PM

Ex.) Simplify:
a)
b)
c)

Unit 4 Notes Package.notebook

Ex.) Prove:
a)
b)

c)

Ex.) Determine the exact value of $\cos (2 x)$ when $\tan x=5 / 12$ and $\cos x<0$.

Unit 4 Notes Package.notebook

Ex.) Determine the exact value of $\tan 2 \mathrm{~A}$ when $\cos A=3 / 5$ in quadrant I.

