

### 4.1 Intro to Relations and Functions



a) Complete the following by writing the coordinates of the points represented by the letters on the grid.
A(
$D($
$B($
$O($
b) Write the coordinates of the point in the second quadrant.
c) Write the coordinates of the point in quadrant III.
d) Complete the following table using "positive" or "negative".

| Quadrant | $x$-coordinate | $y$-coordinate |
| :---: | :--- | :--- |
| I |  |  |
| II |  |  |
| III |  |  |
| IV |  |  |




## Terminology

Dependent Variable - variable along y-axis
Independent Variable - variable along x-axis
Input - x
Output - y
Domain - under which $x$-values does the graph live (all possible x's)
Range - under which $y$-values does the graph live (all possible y's)

~ dependent variable
~ outputs of the relation
~ 2nd coordinate of an ordered pair $\sim$ graphed on the vertical axis

~ independent variable
~ inputs of the relation
~ 1st coordinate of an ordered pair
$\sim$ graphed on the horizontal axis


Consider the relation described by the equation $y=2 x-5$.
a) Complete the first five rows of the following table of values which shows some of the possible input values.

| Input <br> $(x)$ | Output <br> $(y)$ | Ordered pair <br> $(x, y)$ |
| :---: | :---: | :---: |
| -2 |  |  |
| -1 |  |  |
| 0 |  |  |
| 1 |  |  |
| 2 |  |  |
|  |  |  |
|  |  |  |

b) Show the data in a mapping diagram.

b) Plot the ordered pairs in a) on the grid provided.
c) Connect the points on the grid, and extend the line in both directions with arrows at both ends.
d) Use the graph to determine the value of $y$ when $x=6$.
e) Use the equation to determine the value of $y$ when $x=6$, and verify the answer in d).

f) Write the value of $y$ when $x=6$ in the table of values using the first blank space in a).
g) Use the graph to determine the value of $x$ when $y=3$. Put this information in the last row in a).
h) Complete the following statement:

This relation is called a $\qquad$ relation because the graph of the relation is a straight line.



Ex.) State the domain and range for each relation:

d) A circle with center $(-2,3)$ and a radius of 3 .


Ex.) Draw the graph of a relation which has a domain of $x \varepsilon R$, range $\{y \mid y \leq 2, y \in R\}$ and:
i) only one x-intercept
ii) two x-intercepts
b) Can you draw a graph which has domain of $x \varepsilon R$, range $\{y \mid y \leq 2, y \varepsilon R\}$ and no $x$-intercepts?




## Chas Ex 12 The height of a human cannon ball, "Cano", can be described by the formula

$h=12+6 t-t^{2}$, where $h$ is the height in metres above ground level and $t$ is the time in
$h=12+6 t-t^{2}$, where $h$ is the height in metres above ground level and $t$ is the time in
seconds. Cano is projected out of a cannon from the top of a building and lands on a soft nat. The mat is placed in a hole in the ground so that the top of the mat is level with the ground.
a) Display the graph of $h=12+6 t-t^{2}$ on a graphing calculator
b) Write down a window setting which would be appropriate for this situation.
c) Sketch $h=12+6 t-t^{2}$ on the grid provided.
d) What is the height of the cannon above the ground?
e) What is the maximum height Cano reaches?
f) How many seconds does it take Cano to reach the highest point on the path he is traveling?

g) To the nearest hundredth of a second, how long does it take Cano to land on the mat?
h) How high is Cano one second after he is launched?
i) When will Cano be at the height in $h$ ) again?
j) In words, describe the relation connecting height and time.
k) Write an appropriate domain and range for the relation described in j ).


Ex.) A runner goes for a jog. She jogs at a constant speed for 30 minutes, then walks at a slower speed for 10 minutes. She then starts jogging and increases her speed over a 5 minute period until she reaches her maximum speed. She keeps up that pace for 10 minutes. Finally, she walks at a constant speed for 10 minutes until she returns to her starting point. Which of the following graphs illustrates this situation?





4.6 Functions

A function is a special type of relation in which each element of the domain has only one element in the range.

> Vertical Line Test:
> If every vertical line drawn intersects the graph exactly once, then the relation is a function.


How we can determine which relations are functions by...
a) a graph

Each of the following is the graph of a relation.

b) a mapping diagram
c) ordered pairs


Determine which of the following are functions. Explain your answers.
a) $(5,8),(6,7),(-5,3),(2,3),(6,8)$
b) $(3,3),(2,3),(4,5),(-3,2)$
c)

e) The relation connecting the provinces and territories of Canada with their capital cities.



Ex.) In the function $y=2 x-5$, the domain is $\{-1,0,1\}$. What is the range?


### 4.7 Function Notation

Function notation is another way of writing an equation. Function notation allows us to specify what $x$ value we are inputting into our equation.

Main Idea: $f(x)$ replaces $y$

Function Notation
$f(x)=2 x+3$
$f(5)=2(5)+3$
$f(5)=13$

Equation of a Graph of the Function
$y=2 x+3$ when $x=5$
$y=2(5)+3$
$y=13$


Ex.) Consider the function $f(x)=4 x+5$ and $g(x)=4-x$. Evaluate:
a) $g(1)$
b) $f(-2)$
c) $g(-2)$
d) $f(0)-g(0)$

Ex.) If $P(x)=-6 x+1$, determine a simplified expression for $P(2 x)$.


Ex 3) Consider the function $f(x)=8 x-5$.
a) Evaluate f(4)
b) Solve the equation $f(x)=11$
c) Solve the equation $f(x)=75$.

Unit 4 Relations and Functions Notes.notebook


Important Skill:
You need to be able to tell the difference between:

$$
f(x)=5 \quad \text { and } \quad f(8)
$$

